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Abstract — New method is proposed which is based on the 

idea of expressing system of residue numbers of traditional 

Residue Number System (RNS) using lower dimension system of 

sub-moduli. This new recursive data representation allows 

eliminating some of the known drawbacks of RNS arithmetic. 

Despite the constraints imposed on moduli sets, the proposed 

method provides speed gain, as experiments show, and it can be 

used in parallel high speed computing devices. 
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I.  Introduction 
This paper presents development of some constructional 

ideas which were presented as generalized schematic model in 
useful model patent [1]. In computer science history there 
were cases when required speed performance and reliability 
[2, 3] could not be efficiently provided for specialized devices 
design with the means of traditional positional binary 
arithmetic. At the same time, this problem could be solved by 
means of RNS computation. RNS arithmetic is not a universal 
method of calculator design, however, it is irreplaceable for 
some specialized applications. Therefore, it keeps attracting 
interest throughout many past decades. Research results, that 
could help overcome RNS disadvantages and widen its 
application field, are constantly published, actually, there 
exists separate research area dealing with this problem [4-7]. 

There are well-known advantages of RNS arithmetic as 

applied to digital signal processor (DSP) design:  

 natural parallelism of computing;  

 self-test and fault correction ability. 

Also the following disadvantageous properties of RNS are 

known: 

1) big overhead (usage of forward converters from 

conventional notation to RNS representation, and 

reverse converters); 

2) representation of modular operations using operations 

of positional (binary) arithmetic that leads to area 

redundancy during implementation;  
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3) non-uniformity of modular calculators concerning 

their complexity and operation time (performance); 

4) absence of due CAD support for design of RNS 

calculator devices (by systems of structural 

synthesis)[8]. 

The first disadvantage can be leveled if comparatively 

complex calculators are designed. As hardware cost of 

converters is restricted by design rules (project limits), this 

overhead can be lessened with the growth of total design 

complexity. The same is applicable to time expenditures.  

The fourth disadvantage can be mastered by the usage of 

so-called IP-generators – program modules that produce RTL 

level synthesizable behavioral description of devices carrying 

out certain RNS (or maybe non-RNS) procedures. 

There are no known methods of the essence to jump over 

the second and the third disadvantages. It is exactly these 

difficulties that our new approach to RNS calculator design, 

which is named recursive RNS arithmetic, is aimed to master.  
Ideas proposed in this paper are based on the principles of 

deep paralleling of modular operations of RNS with moduli 
set p1, p2,…, pn by reducing of modular operations for each of 
the used moduli pi (i ≤ j ≤ n) to modular computations using 
the previous used moduli p1, p2,…, pi-1, which have this or that 
technological advantage (e.g., small bit width). We will refer 
to the latter as basic moduli. Note that the mentioned reduction 
is possible only if the so-called condition of calculation limits 
matching for each of the used moduli pi with calculation limits 
of the corresponding sets of basic moduli, is true. The 
principle of calculation limits matching guarantees, first, 
isomorphism of ring operations for their corresponding sets of 
basic moduli; second, possibility of reversion of each step of 
recursion by conversion of corresponding RNS basic moduli 
codes to positional code (e.g., basing on Chinese remainder 
theorem, or by their transformation to Mixed-Radix system). 

II. The idea of recursive RNS 
Let us explain procedure of recursive conversions using 

the following simple example. Take two-bit prime integers  
p1= 2, p2= 3 as basic moduli. It is evident that any modulo 5 
residue has unique representation by moduli 2 and 3. At the 
same time, residues for moduli 2, 3 and 5, where modulo 5 
residues are expressed via moduli 2 and 3 residues, can 
uniquely represent any modulo 29 residue. Residues for 
moduli 2, 3, 5 and 29 can uniquely represent any modulo 863 
residue. And so on, until we get the required set of used 
moduli: 2, 3, 5, 29, 863,... This example clearly illustrates the 
following 4 facts: 
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 Complexity and time use of number conversion using 
basic moduli 2 and 3 are approximately equal (bit 
width equals 2 for both basic moduli); 

 Higher degree of paralleling is achieved; 

 Regularity is improved (all calculators use moduli 2 
and 3); 

 Small bit width for basic moduli provides effective 
combinational implementation of modular operations 
for these basic moduli. 

In reality not all these features are as good as they appear 
to be at the first glance. Actually, there are several constraints 
to be applied which add to complexity of devices designed 
using the proposed methodology. Let us consider these 
constraints. 

Let be the set of basic moduli p1, p2,…, pm, and modulo 
pm+1 residues are to be expressed using this set of basic 
moduli. It is obvious that the maximal modulo pm+1 residue is 
max = pm+1−1. Knowing this value and the sequence of 
operations to do, maximal value MAX of arithmetic operation 
result can be estimated. Clear that for unique representation of 
arithmetic operation result it is necessary that MAX <Q, where 
Q= p1∙p2∙…∙pm. For the rest of moduli the same estimation 
procedure applies. 

Now consider the previous example for the basic moduli 2 
and 3. In this case Q = 2∙3 = 6. Minimal prime integer (after 2 
and 3) is 5 (max = 4). We cannot implement neither addition 
because 2∙max > Q (8 > 6), nor multiplication, as max

2
 > Q 

(16 > 6). To implement any of these arithmetic operations 
(addition or multiplication) value Q should be increased (that 
is, number or/and value of basic moduli should be increased). 
Consider the following set of basic moduli: all mutually prime 
3-bit integers, i.e. 4, 5 и 7. In this case Q = 4∙5∙7 = 140. 
Condition necessary to provide MAX < Q for multiplication is 

max
2
 < Q , in other words, Qpi 1

 (pi−1 < 11,8). Set  pi=11 

(prime integer nearest to 7). Generation of basic moduli can be 
easily continued using the same procedure until the required 
computational range is achieved. 

Finally consider a problem from practice. Let we have to 
implement Fourier transform for 24-bit arguments and 1024 
nodes. To do this, the sum of 1024 products should be 
calculated, that is, the following constraint should hold: 
1024∙max

2
 < Q. For this task a set of 3-bit basic moduli is not 

enough. Let us add 4-bit moduli to the basic set: 5, 7, 8, 9, 11 
and 13 (Q = 360360). To chose the nearest used modulus it is 

necessary that 
1024

1
Q

pi  . That is, we get pi−1<32 . Let 

pi=31. Use the same estimation procedure to generate the 
whole tree of the used moduli. To implement such device, a 
block of 6 calculator units (one for each basic modulus) should 
be designed. 16 of these units are required. That is where 
regularity comes in useful. Note that all calculators are 
extremely fast for modular operations (due to super-
paralleling) and low area usage due to small values of basic 
moduli or their closeness to power of 2 numbers. 

As such, the proposed method of recursive RNS 
calculation provides the following advantages: 

 Elimination of non-singularity for operating small 
and large moduli (cost (area) and performance are 
approximately the same for all moduli, as, ideally, 
they should have the same bit width). 

 Sufficiently higher degree of paralleling resulting in 
better speed performance. 

 Regularity appears (great number of equal moduli are 
used). 

 Small bit width of basic moduli allows for modular 
operations implementation by combinational circuits 
optimized in Boolean basis. 

III.  Data representation and main 
operations of recursive RNS 

Recursive RNS is based on the following idea: express the 
moduli set in terms of set of smaller dimension sub-moduli. 

 

Figure 1.  Recursive RNS hierarchy 

Consider moduli set p1, p2,…, pi,…, pn and a vector                
A=(a1, a2,…,an). Let us express ai in terms of sub-moduli set 
(pi,1, pi,2,…, pi,k) , where Pi= pi,1 ∙ pi,2 ∙ ∙…∙ pi,k and ai < Pi:              
ai = (ai,1, ai,2,…, ai,k). Then vector A can be expressed as 
follows: (a1,a2,…,ai−1,(ai,1, ai,2,…,ai,k ),ai+1,…,an) ,                             
see Figure 1. Let us name the set of the first m moduli the 
basic moduli set, and denote their product Q =  p1 ∙ p2 ∙…∙ pm. 
Let pi,1 = pi, pi,2 = p2,…, pi,i−1 = pi−1, and k = i−1, then for               
i = m+1,…,n recursion takes place. The i-th element                     
ai = (a1, a2,…, am, am+1,…, ai−1) for moduli set p1, p2,…, pm, 
pm+1,…, pi−1 or, expanding recursion, we get: 
ai=(a1,a2,…,am,(am+1,1,am+1,2,…,am+1,m) ,…). Figure 2 shows a 
special case of element ai decomposition for n = 6 and m = 3. 
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Figure 2.  Recursive decomposition of element p6 using sub-moduli                        

set (p1, p2, p3) 

A. Forward conversion of positional 
number notation to recursive RNS 
notation. 
While in traditional RNS arithmetic number of vector 

elements is equal to the number of moduli set elements, in 
recursive RNS arithmetic number of vector elements grows as 
function of n and m. 

Clear that any of the first m elements is presented by a 
single number. m+1-th element contains m elements, as it is 
expressed by m elements of submoduli set:                            
am+1=(am+ 1,1,am+1,2,…,am+1,m). m+2-th element contains 2∙m 
elements, as it is expressed by m elements of sub-moduli set 
and m elements of vector am+1. Thus, we come to conclusion 
that the number of elements Li for vector ai can be expressed 
by the following formula: 


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The total number L for vector A can be evaluated using 
geometric series formula [9]: 
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(2) 

Consider a numeric example. Consider the moduli set: p1, 
p2, p3, p4, p5 = (2, 3, 5, 29, 863). P = 2∙3∙5∙29∙863 = 750810. 
Check the condition: 2∙3 > 5, 2∙3∙5> 29, 2∙3∙5∙29 > 863. 
Choose basic moduli set (p1, p2). Then Q =  p1∙p2 =6, n = 5, 
m=2. Number of vector elements is: L = 23∙2 = 16. 

Decompose number A = 865 written in positional notation 
to traditional RNS basis vector: A = (|865|2, |865|3, |865|5, 
|865|29, |865|863 ) = (1,1, 0, 24,2). 

 

 

 

Now decompose number A for recursive RNS basis: 
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As all numbers in the resulting vector do not exceed 3, the 
needed storage capacity is 16∙2 = 32 bits, instead of 20 bits for 
positional notation number storage. Amount (coefficient) of 
redundancy is 1.6. Fig. 3 illustrates this example. 

 

Figure 3.  Number decomposition for recursive RNS basis (2, 3, 5, 29, 863) 

using basic moduli set (2, 3) 

B. Basis choice restrictions 
Maximal value that can be presented in terms of pm+1 is 

max = pm+1−1. To enable arithmetic operations for certain 
numbers operation result for element pm+1 should not exceed 
Q=( p1 ∙ p2 ∙…∙ pm). This value equals 2∙max for addition and 
max2 for multiplication. 

Look upon the following example. Consider basis (2, 3, 5). 
We take the basic moduli set (2, 3). In this case Q = 2∙3 = 6, 
max = 4. As addition requires maximal representable number 
8, that is greater than 6, and multiplication requires number 
16, that is also greater than 6, this basis is inappropriate for 
basic arithmetic operations even though it can be used for one-
to-one number decomposition. For practical needs value of Q 
should be increased. 

How to choose basic elements? Consider the following 
example. Consider basic moduli set (4, 5, 7). The element p4 
should be chosen so that the resulting recursive basis enables 
multiplication. 
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Thus, we can add p4 = 11 to recursive basis. 
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C. Reverse number conversion from 
recursive RNS notation to positional 
notation 
Reverse conversion needs recursive implementation based 

on the same method that is used for conversion of traditional 
RNS vector to positional notation number. 

Consider arbitrary vector A = (a1, a2,…, an). It is known for 
RNS that A = (a1, a2,…, an) = (a1,0 ,…,0) + (0, a2 ,…,0) +…+ 

+(0,0 ,…, an) = 

P

i

n

i

i Ba 
1

, where B0=(1,0 ,…,0 ) ,                 

B1=(0,1 ,…,0) ,…, Bn=(0,0 ,…,1) is a system of orthogonal 
bases [10]. 

For recursive RNS a set of orthogonal bases should be 
found for the following residue number systems:                                   
( p1, p2,…, pm) , ( p1, p2,…, pm+1),…, ( p1, p2 ,…, pn) . 

View one more example. Consider basis (3, 5, 7, 11, 13) 
and basic moduli set (3, 5, 7). Let us convert vector                          
(1, 2, 1, (0, 3, 3), (0, 1, 6,(0, 1, 6))) to positional notation. For 
reverse conversion we have to find orthogonal bases for each 
of the following residue number systems: 
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The process of reverse conversion is shown at fig.4. In 
positional notation the given vector is presented as 13357. 

 

Figure 4.  Process of vector converse reversion 

D. Addition and multiplication in 
recursive RNS arithmetic 
If constraints hold for a basis (see paragraph 3B), then 

number addition and multiplication are done similar to 
traditional RNS arithmetic. To add (multiply) two numbers, 
corresponding vector elements should be added (multiplied) 
modulo pi. As all vector elements are small and use few digits, 
parallel addition (multiplication) is very fast. 

IV. Experimental results 
After the text edit has been completed, the paper is ready 

for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word 
Formatting toolbar. 

Experiments were done to compare speed performance of 
scalar multiplication of vectors for three different 
implementations: first, positional notation; then, traditional 
RNS basis notation; and, finally, recursive RNS basis notation.  

Device models were implemented by means of digital 
Integrated Circuits design flow using standard cell libraries. 
The chosen flow includes Verilog HDL behavioral description 
of the device; Synopsys Design Compiler logic synthesis 
tools; Synopsys PrimeTime static timing analysis tools; 
standard cell library Nangate Open Cell library for 45nm 
design rules. 

In the designed recursive RNS device forward conversion 
is implemented as pipeline, thus, forward conversion delay for 
given parameters is always less than the delay for the main 
body of scalar multiplication. Reverse conversion takes rather 
a long time, however, even for the most difficult cases it is 
finished long before a new portion of data comes to input of 
the reverse converter unit, due to the fact that the number of 
clock cycles assigned for reverse conversion is equal to the 
number of vector elements.  

Thus, the device frequency is defined by the maximal 
delay unit, i.e., the main body of scalar multiplier. 

Let each vector consist of 1024 elements and have 20-bit 
arguments. Then the sum of 1024 products is to be calculated, 
i.e., the following condition must hold: 1024∙max

2
 < Q. To 

provide this, 3-bit basic moduli set is not enough. Let us add 
4-bit moduli: 5, 7, 8, 9, 11 and 13 (Q = 360360). Use formulas 
from p.4 to chose the nearest modulo value. We get p7 < 18. 
Chose p7 = 17 . Construct the whole moduli tree using this 
algorithm: (5, 7, 8, 9, 11, 13, 17, 73, 659, 16963). To 
implement device for this moduli tree, a unit (block) 
containing 6 calculators (one for each basic modulus) should 
be designed. 16 of these units are required. This is where 
regularity comes in useful. Note that all calculators are 
extremely fast (due to super-paralleling) and low cost (area 
usage) due to small values of basic moduli. 
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Consider the combinational part of the synchronous scalar 
multiplication circuit (see fig.5). 

 

Figure 5.  Combinational part of vectors scalar multiplication circuit 

Clock frequency of the device depends on the critical path 
length for this part which contains three operations: 
multiplication, addition and residue calculation.  

Several flow devices for scalar multiplication of vectors 
were designed. Each RNS device consists of three parts: 
forward conversion from positional notation, main body for 
scalar multiplication and reverse conversion from recursive 
RNS notation to positional notation. Clock frequency is 
defined by the slowest circuit part. In our case it is scalar 
multiplication part. Such parameters as maximal clock 
frequency and total device area were estimated for three 
different computing methods: traditional implementation using 
positional notation, RNS implementation and recursive RNS 
implementation. Tables I, II and III present the results. 

TABLE I.  BASIC DATA 

Vector 

length 

Data bit 

width 

Moduli set 

RNS Recursive RNS 

512 16 

7, 11, 13, 16, 

17, 19, 23, 

27, 29, 31 

basic: 5, 7, 8, 9, 13, 17 

complementary: 31, 181, 709 

1024 20 

37, 41, 43, 

47, 53, 59, 

61, 63, 64 

basic: 5, 7, 8, 9, 11, 13 

complementary:  17, 73, 659, 

16963 

2048 24 

5, 7, 17, 31, 
61, 67, 71, 

73, 113, 127, 

128 

basic: 13, 17, 19, 23, 29, 31 

complementary: 199, 2903, 

11497 

TABLE II.  DELAY ANALYSIS 

Vector 

length 

Data bit 

width 

Clock frequency (MHz) 

Positional 

notation 
RNS 

Recursive 

RNS 

512 16 409 726 855 

1024 20 346 581 986 

2048 24 294 537 794 

TABLE III.  AREA ANALYSIS 

Vector 

length 

Data bit 

width 

Combinational part of the synchronous scalar 

multiplication circuit 

Positional 

notation 
RNS Recursive RNS 

512 16 3119 3928 11443 

1024 20 5040 5857 22745 

2048 24 6915 6742 26038 

V. Disadvantages of recursive 
RNS arithmetic: possible ways to 

overcome 
Main disadvantages of the proposed method are as follows: 

1) area overhead; 2) complication of forward and reverse 
conversion unit from and to positional notation (complexity of 
the other non-RNS operations also grows); 3) restrictions on 
moduli bases choice; 4) restrictions on number of operations 
in sequence (without recursion applied). 

Some of the drawbacks of recursive RNS arithmetic 
immediately follow from the fact that the used flow includes 
residue operations for comparatively long numbers. In 
traditional RNS arithmetic sets of small moduli or some 
special moduli are used as a rule. So, recursive RNS arithmetic 
can be further improved by usage of Mercenn numbers [11] 
or/and special numbers 2

n
 ± k which require less area for 

implementation of residue calculation.  

This work was partially supported by a grant from RFBR 
№ 13-07-00241а. 

References 
[1] Residue number system calculation device. Useful model patent No. 

103010 Russian Federation, IPC G06F7/72. Assignee: IPPM RAS. App. 
No. 2010148522; app.: 29.11.2010; reg.: 20.03.2011J. Clerk Maxwell, A 
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: 
Clarendon, 1892, pp.68–73. 

[2] S.V. Gavrilov, O.N. Gudkova, A.L. Stempkovskiy. The Analysis of the 
Performance of Nanometer IP-blocks Based on Interval Simulation.  // 
Russian Microelectronics, Vol.42, N7, 2013, P. 396–402. © Pleiades 
Publishing, Ltd., 2013. 

[3] Alexander Stempkovsky, Alexey Glebov, Sergey Gavrilov “Calculation 
of Stress Probability for NBTI-Aware Timing Analysis” // Proc. of 
ISQED, 2009, p.714-718. 

[4] I. Ya. Akushskij and D. I. Yuditskij, Residue Number System Computer 
Arithmetic. – Moscow.: Sovetskoe Radio, 1968. – 440pp  

[5] N. S. Szabo and R. I. Tanaka, Residue Number System and its 
applications to Computer Technology, McGraw-Hill, New York, 1967. 

[6] M. A. Soderstrand et al, (Eds), Residue Number System Arithmetic: 
Modern Applications in Digital Signal Processing, IEEE Press, NY, 
1986 

[7] Amos Omondi, Benjamin Premkumar «Residue Number Systems: 
Theory and Implementation», 2007. 

[8] Gavrilov S., Glebov A.,  Pullela S., Moore S., Vijayan G., Dharchound-
hury A., Panda R., Blaauw D.  Library-Less Synthesis for Static CMOS 
Combinational Logic Circuits // Proc. of IEEE/ACM International 

CLK 

% 



 

56 

International Journal of Advances in Computer Science & Its Applications – IJCSIA 
Volume 4: Issue 4       [ISSN 2250-3765] 

Publication Date : 27 December,2014 
 

Conference on Computer Aided Design (ICCAD-97). - San Jose, CA, 
USA, November 9-13, 1997. - Р. 658-662. 

[9] Vygotskij M.Ya. «Elementary mathematics reference guide», Moscow, 
2006.  

[10] B. Tseng, G. A. Jullien, W. C. Miller. 1992. Implementation of FFT 
structures using the residue number systems. IEEE Transactions on 
Computers, 28(11). 

[11] http://en.wikipedia.org/wiki/Mersenne_prime. 

 

About Author (s):  

A.L. Stempkovsky has degree of doctor of engineering 
sciences, professor, academician of the Russian 
Academy of Sciences (RAS) (2006). Dr.Stempkovsky 
is the winner of the State Awards of the Russian 
Federation in the field of science (2003); the author of 
145 scientific publications including a number of 
inventions and three monographies. His achievements 
have been rewarded by the Honor Award and the 
Friendship Award of the Russian Federation. Dr. 
Stempkovsky is one of the leading scientists of Russia 

in the field of Computer Aided Design (CAD) for micro- and nanoelectronic 
equipment. During only last ten years, 99 research and development programs 
were carried out by the Institute under his management. The employees of the 
Institute have published more than 420 articles and reports in proceedings of 
the Russian and international conferences, nine employees have defended 
Ph.D. thesis and two - doctoral thesis. 

 

 

V.M. Amerbaev received his MS degree in Math from 
Al-Farabi Kazakh National University, Kazakhstan, 
Almaty, in 1954 and Ph.D degree in Math from 
Steklov Institute of Mathematics, USSR, Moscow in 
1963. He is currently a chief scientific officer in the 
Electrical and Computer Engineering Department at 
Institute for Design Problems in Microelectronics, 
Russia, Moscow. His current research interests are in 
residue number systems, reliablity and VLSI. 

 

 

R.A. Solovyev received his MS degree in Computer 
Systems Engineering from National Research 
University of Electronic Technology, Russia, in 2004 
and Ph.D degree in Electrical Engineering from 
Institute for Design Problems in Microelectronics, 
Russia in 2007. He is currently department head in the 
Electrical and Computer Engineering Department at 
Institute for Design Problems in Microelectronics, 
Russia, Moscow. His current research interests are in 

residue number systems, highspeed hardware architectures, and VLSI. 

 

T.Y. Isaeva received her MS degree in Computer 
Systems Engineering from Lomonosov 
Moscow State University, Russia and Ph.D degree in 
Russia in 2002. is currently a Researcher in the 
Electrical and Computer Engineering Department at 
Institute for Design Problems in Microelectronics, 
Russia, Moscow. Her current research interests are in 
residue number systems, highspeed hardware 
architectures, and VLSI. 

 

E.S. Balaka received his master`s degree in Technics 
and Technology from National Research University of 
Electronic Technology, Russia, in 2010. She is 
currently a Researcher in the Electrical and Computer 
Engineering Department at Institute for Design 
Problems in Microelectronics, Russia, Moscow. Her 
current research interests are in residue number 
systems, highspeed hardware architectures, and VLSI. 

 

D.V. Telpukhov received his master`s degree in 
Technics and Technology from National Research 
University of Electronic Technology, Russia, in 2009 
and Ph.D degree in Electrical Engineering from 
Institute for Design Problems in Microelectronics, 
Russia in 2013. He is currently a Researcher in the 
Electrical and Computer Engineering Department at 
Institute for Design Problems in Microelectronics, 

Russia, Moscow. Diploma For the best Regular Paper on EWDTS’13 
Symposium and outstanding contribution in Design & Test (2013). Winner in 
the fair of scientific and technological ideas and projects of youth "RHYTHM 
Zelenograd» 2011. His current research interests are in residue number 
systems, highspeed hardware architectures, and VLSI. 

 

http://www.ras.ru/
http://www.ras.ru/

