

15

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

Quality Oriented Logical Design for Data Warehouse

Development
Munawar, Naomie Salim, Roliana Ibrahim

Abstract—To make an effective data warehouse logical

design which is related to system performance, it is

important to manage an appropriate methodology for data

fragmentation, indexing and materialized view. Executing

a query in a data warehouse may take hours or days to run

without the proper optimization technique. This paper

proposed a framework on integrating quality, deliverables

in conceptual design as an input into the logical design,

and the optimization technique to run query, to treat as

continuous improvement from preceeding stage.

Keywords—logical design, data warehouse, indexing,

materialized view, fragmentation

I. Introduction
A data warehouse (DW) integrates data from external

sources and from internal OLTP (On Line Transactional
Processing) to support analytical query processing. This
analytical query processing can be used by an enterprise to
achieve a great competitive advantage. OLAP (On-Line
Analytical Processing) tools represent data in a
multidimensional version, enabling business users to
formulate queries and perform analysis.

Quality issues raised by DW are crucial. For an effective
DW system, the quality aspects should be incorporated
properly at the various levels of DW development including in
logical design phase.

Logical design is the most attracted phase with strongly
impacts to the system performance. It is aimed at deriving out
of the conceptual schemata the data structure that will actually
implement the data mart or DW by considering some sets of
constraints (e.g., concerning disk space or query answering
time [22]). During logical design the designer defines which
structures will be used to store information and how their
performance can be optimized.

An acceptable (or good) DW performance is one of the
important features that must be guaranteed for DW users. For
this reason, providing means for increasing the performance of
a DW for analytical queries is one of the important research
and technological areas.

Munawar

Esa Unggul University

Indonesia

Naomie Salim, Roliana Ibrahim
Universiti Teknology Malaysia

Malaysia

In this paper, we study logical design and practical issues
related to the design of multidimensional modeling. The
framework for investigation is I-LogiQ (Integrated Logical
Design and Quality), a logical model for OLAP systems that
extends our earlier proposal [12; 13; 14]. This model includes
a number of concepts that optimize the technique to run query
using indexing, materialized view, and fragmentation,
commonly used in multidimensional database.

The paper is structured as follows. Section 2 describes
related research. Section 3 presents the proposed framework.
Finally, conclusion is described in section 4.

II. Related Works
Due to the increasing complexity of DWs, continuous

attention must be paid for evaluation of their quality
throughout their design and development [6]. It is also very
important to consider quality issues at various levels of models
including logical models. Quality of the DW logical models
has been assured by proposing several metrics to evaluate the
quality of star schemas at logical level. These proposed
metrics were validated theoretically and empirically [17, 16].
[17] have proposed metrics for measuring multidimensional
schemas analyzability and simplicity. Nevertheless, the
metrics proposed in these approaches have not been
empirically validated and consequently, have not proven their
practical applications [4]. Recently, [16] proposed a set of
metrics for assessing the understandability of DW schemas
using structural metrics and also validated theoretically and
empirically through a family of experiments.

Our proposed frameworks mainly focus on integrating
quality and deliverables in preceding stage (conceptual stage)
as an input into the logical design in order to treat as a
continuous improvement in the next phase. In a DW where
data is processed in stages, and where the quality of data at
one stage is dependent on the DQ measurements in preceding
stages, DQ can be assessed and monitored continuously in
order to guarantee high quality levels. As a result, DQ is not
only an integral part of DW project, but will remain a
sustained and ongoing activity [12].

III. Proposed Framework
The logical design can be used for many purposes [2]: (i)

as an intermediate representation between the conceptual
design and the physical design, providing an operational view
of the DW without necessarily dealing with performance nor
physical representation of data, (ii) as a reference schema from
which the physical design starts and to which the benefit of the
selected materialized views is balanced, (iii) as a support to
control the DW evolution both at its client and source levels.

16

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

The logical design of the DW serves to define the structure
to ensure an efficient access to information. It can be
presented as relational or multidimensional structure that takes
as input the conceptual schema representation, the information
requirements, the source database and non-functional
requirements [26]

In relational implementations, the so-called star,
constellation, and snowflake schemata are widely accepted to
manage data cubes and are supported by various vendors.
Concerning multidimensional implementations, several
efficient multidimensional data structures such as condensed
cubes, dwarfs, and QC-Trees have been proposed to manage
data cubes. Comparison between relational implementation
and multidimensional implementation can be seen in Table I,
Table II and Table III.

TABLE I. COMPARISON OF RELATIONAL IMPLEMENTATION FOR

MULTIDIMENSIONAL MODELING [11]

 Star

Schema

Fact Constellation

Schema

Snowflake

Schema

Efficiency High High Moderate

Usability High Moderate Moderate

Reusability Low Low High

Flexibility High High Moderate

Redundancy High High Low

Complexity Low Moderate Moderate

TABLE II. THE COMPARISON BETWEEN DW SCHEMAS IN TERM OF

ADVANTAGES AND DRAWBACKS [31]

DW Schema Advantages Drawbacks

Star Schema It is the simplest

structure [28]

 It reduces the number of
tables [27]

 It reduces the number of
relationships between

the tables [27]

 It reduces the number of

joins required in user
queries [27]

 It speed up query

performance

 It can be very

inflexible [29]

 For every gigabyte
of row data a

schema will require
at least an additional

gigabytes for

aggregations [29]

 The amount of

development
maintenance effort

needed to manage

schema oriented
DW [29]

Fact Constellation

Schema
 It reuses the dimension

tables to save storage
space [30]

 It may not be useful

for small
organization

because of its

complexity [36]

Snowflake Schema It shows explicitly the

hierarchical structures

of each dimension [29]

 It is intuitive and easy

to understand [31]

 It can accommodate for

aggregate data [31]

 It is easily extensible by

adding new attributes

without inferring with
existing database

programs [31]

 It adds unnecessary

complexity [29]

 It reduces query
performance [29]

TABLE III. COMPARISON OF DIMENSIONAL IMPLEMENTATION FOR

MULTIDIMENSIONAL MODELING

 Condensed Cube

[23, 5]
Dwarf [18, 19] QC-Trees [10]

Size

Much smaller size
of non-condensed

cube

Highly

compressed and

clustered data
cubes

Very compact

data structure

Compress

ion

 Fully pre-

computed cube
without

compressio

 Neither
decompression or

further
aggregation is

required when

answering queries

 Complete

architecture
that support

queries,

updates and
roll-up data.

 A tunable
granularity

parameter

that controls

the amount

of

materializatio
n performed

 It is elegant and

lean in that the
only

information it

keeps on
classes are their

upper bound

and measure(s)

 Better

compression

and

construction

time than
Dwarf

Traditional database systems are inadequate for
multidimensional analysis since they are optimized for on-line
transaction processing (OLTP), which corresponds to large
numbers of concurrent transactions, often involving very few
records. Conversely, multidimensional database systems
should be designed for the so-called on-line analytical
processing (OLAP), which involves few complex queries over
very large numbers of records. Current technology provides
both OLAP data servers and client analysis tools. OLAP
servers can be either relational systems (ROLAP) or
proprietary multidimensional systems (MOLAP).

Unlike OLTP systems where the logical data schema is
hidden underneath an application layer, the logical
multidimensional (MD) schema of an OLAP system is directly
used by the end user to formulate queries. Thus, the MD
schema is crucial as it determines the type of queries the user
can formulate. One of the main problems in MD data models
occurs when the modeled OLAP scenarios become very large
since the dimensionality increases significantly, and therefore,
this leads to extremely sparse dimensions and data cubes [22].
The system architecture for DW logical designs can be seen in
Figure 1.

The way data are actually stored gives rise to different
types of OLAP: relational OLAP (ROLAP), multidimensional
OLAP (MOLAP), and hybrid OLAP (HOLAP). The choice of
ROLAP or MOLAP should depend on the query complexity
and performance. For more complex queries and quicker
response times, MOLAP should be used because it stores the
data in multidimensional databases (cubes) that provide
extensive OLAP capabilities. In ROLAP, on the other hand,
the data are stored as relational tables and the ROLAP engine
generates MD views on the fly. But the ROLAP model works
fine when query complexity is not that high and response time
demands are not that great.

17

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

Figure 1. Proposed quality-based framework for logical design in DW

development

DW consists of a huge fact table and multiple dimension
tables. Queries executed on the top of this schema, typically
perform aggregations on the fact table based on selections
among the available dimension levels. The growth of the DW
volume can degenerate OLAP query performance [20]. As a
result, queries frequently submitted to the data warehousing
environment no longer ensure satisfactory response times to
users.

To reduce the cost of execution caused by decisional
complex queries, implying a very voluminous fact table which
is linked through a multitude of joins with the dimension
tables, we can use structures and optimization techniques such
as: indexes, materialized views and / or fragmentation of data
[15]. Without optimization techniques, queries may take hours
or days to run. This is due to the high complexity of queries.

Materialized views are physical structures that improve
data access time by precomputing intermediary results. Then,
user queries can be efficiently processed by using data stored
within views and do not need to access the original data.
Nevertheless, the use of materialized views is restricted by
factors like space availability and query response time. Not all
possible views for a multidimensional cube can be
materialized because the number of views grows exponential
to the number of cube dimensions. In general, a cube with n
dimensions has 2n possible views [7].

A materialized view is much richer in structure than an
index since a materialized view may be defined over multiple
tables, and can have selections and GROUP BY over multiple
columns. In fact, an index can logically be considered as a
special case of a single-table, projection only materialized
view [1]. This richness of structure of materialized views
makes the problem of selecting materialized views
significantly more complex than that of index selection.

A crucial problem related to view materialization is that of
accurately estimating the actual cardinality of each view [49;
48]. Since the number of possible views which can be derived
by aggregating a cube is exponential in the number of
attributes, most approaches assume that a constraint on the
total disk space occupied by materialization is posed, and
attempt to find the subset of views which contemporarily
satisfies this constraint and minimizes the workload cost [43;
44; 45]. If the DW has already been loaded, view cardinalities
can be quite accurately estimated by using statistical
techniques based, say, on histograms [47] or sampling [46].
However, such techniques can not be applied at all if the DW
is still under development, and the estimation of view
cardinalities is needed for design purposes.

Indexing a DW is very tricky [34]. If there are few indexes,
the data loads up quickly but the query response time is slow.
If there is too many indexes, the data loads slowly and need
more storage space but the query response is good. So there is
a trade-off between the number of indexes built and response
time of queries Indexing in any database, transactional or
warehouse, most often reduces the retrieval time of query
results [35]. Different indexing techniques have been
developed which are being used in for fast data retrieval in
DW environments. Brief description of a few indexing
techniques is given below.

TABLE IV. COMPARISON OF INDEXING TECHNIQUES [34]

Indexing

Techniques

Advantages Drawbacks

Bitmap indexing Widely used in DW
environment [37]

 Reduced response time for
large classes of ad-hoc

query

 Reduced storage
requirements as compared

to other indexing
techniques [37].

 Dramatic performance
gains on hardware with a

relatively small number of

CPUs or a small amount of

memory [37].

 Efficient maintenance

 It works pretty slow
on high cardinality

column data.

 A modification to a

bitmap index

requires more work
on behalf of the

system.

 The concurrency for
modifications on

bitmap indexes is
outrageous.

Cluster indexing It can be formed dense and
sparse to get optimized

performance.

 Good for range based

queries but requires sorted

data.

 If data is not sorted
then cost of sorting

is also added up.

 Also Insertions often

requires reordering

of data, so it is
costly operation in

terms of time and
resources in Data

ware housing [38,

39].

The way data are stored

Star Canstellation Snowflake

Multidimensional Modeling

MOLAP

§ Data are stored in

multidimensional format

§ OLAP engine resides in a

special server

ROLAP

§ Data are stored in relational

format and presented

virtually in multidimensional

format

§ OLAP engine resides at the

client side

HOLAP

§ Non aggregated data are

stored in relational database

while the summarized,

aggregated pieces of

information are stored in

MOLAP

Relational Implementation

Cube Dwarf QC-Tree

Dimensional Implementation

Technical Quality

Content Access

Business Quality

Non-Functional Functional

Quality Driver

Data Quality Tools

Indexing

Informational Quality

Correct Complete Dimensional Fact

Model (DFM)
Class Diagram

Deliverables from conceptual design as input

View Materialization

Fragmentation

Data SourcesETL

18

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

Indexing

Techniques

Advantages Drawbacks

Hash-based
indexing

 It reduces a large amount
of data down to a

reasonable number by

transforming it through a
hash function and indexing

that number [40].

 It reduces the average
lookup cost by a careful

choice of the hash
function, bucket table size,

and internal data structures

[41].

 It does not need the key to

be sorted order.

 Hash-based indexing

technique is best for

equality selections.

 Bad hash function
leads to collusion.

 Hash-based indexing
technique cannot

support range

queries.

 Static hashing can

leads to long chains.

 Reverse of hash is

still impossible.

Although indexing can help in providing good access
support at the physical level, the number of irrelevant data
retrieved during the query processing can still be very high.
The horizontal fragmentation aims to reduce irrelevant data
accesses [42; 36]. Moreover, fragments can be allocated to
data marts if the data in data marts are derived from the
warehouse data (i.e. top-down approach). Another advantage
of allowing partitioning of a warehouse data is that an OLAP
query can be executed in a parallel fashion [36]

Executing an OLAP query in a DW can be very expensive,
particularly on large warehouse data, if the data is not modeled
properly. Moreover, if OLAP queries need only a portion of
data, it is advisable to fragment data so that a set of queries
can be executed on each fragment as far as possible, thus
query response time can be minimized [36].

In the relational DW context, there are three fragmentation
types [42]: vertical fragmentation, horizontal fragmentation
and hybrid fragmentation (horizontal fragmentation followed
by vertical, or vice versa). Vertical fragmentation splits a
relation R into sub-relations that are projections of R with
respect to a subset of attributes. It consists in grouping
together attributes that are frequently accessed by queries.
Vertical fragments are built by projection. The original
relation is reconstructed by joining the fragments. Horizontal
fragmentation divides a relation into subsets of rows using
query predicates. It reduces query processing costs by
minimizing the number of local accessed instances. Horizontal
fragments are built by selection. The original relation is
reconstructed by fragment union.

There are two versions of horizontal fragmentation [42]:
primary and derived. Primary horizontal fragmentation of a
relation is performed using attributes defined on that relation.
This fragmentation may reduce query processing cost of
selections. Derived horizontal fragmentation, on the other
hand, is the fragmentation of a relation using attribute(s)
defined on another relation(s). In other word, the derived
horizontal fragmentation of a table is based on the
fragmentation schema of another table(s).

IV. Conclusion
In this paper, we have proposed a framework based on

logical model for integrating data quality dimensions and
deliverables in preceding stage (conceptual stage: dimensional
fact model and class diagram) as an input in order to treat as a
contionus improvement in logical stage. In a DW where data
is processed in stages, and where the quality of data at one
stage is dependent on the DQ measurements in preceding
stages, DQ can be assessed and monitored continuously in
order to guarantee high quality levels. A key step in logical
design is optimization technique to run query among data
fragmentation, indexing and materialized view. This paper
shows how to choose the proper technique to run query
effectively

References

[1] Agrawal, S., Chaudhuri, S. and Narasayya, V. 2000. Automated

Selection of Materialized Views and Indexes for Proceedings of the 26th
International Conference on Very Large Databases, Cairo, Egypt, 2000

[2] Bouzeghoub, M. and Kedad, Z. 2000. A Logical Model for Data
Warehouse Design and Evolution. In Y. Kambayashi, M. Mohania, and
A M. Tjoa (Eds.): DaWaK 2000, LNCS 1874, pp. 178−188, 2000.

[3] S. Cohen, W. Nutt, and A. Serebrenik. Algorithms for rewriting
aggregate queries using views. In Proc. DMDW, Heidelberg, Germany,
1999.

[4] Fenton, N., Pfleeger, S. 1997. Software Metrics: A Rigorous Approach
(2nd ed.). London: Chapman & Hall.

[5] Feng, J., Fang, Q., and Ding. H. 2004. Prefixcube: Prefix-sharing
condensed data cube. In Proc. DOLAP, pages 38–47.

[6] Inmon, W.H. 1997. Building the data warehouse (2nd ed.). John Wiley
and Sons.

[7] Jamil, H. A. and Modica, G.A. 2001. A View Selection Tool for
Multidimensional Databases in L. Monostori, J. V_ancza, and M. Ali
(Eds.): IEA/AIE 2001, LNAI 2070, pp. 237{246, 2001.c Springer-
Verlag Berlin Heidelberg 2001

[8] Jarke, M., Jeusfeld, M., Quix, C., Vassiliadis, P.: Architecture and
quality in data warehouses: an extended repository approach.
Information Systems, volume 24, number 3, 1999

[9] Gupta, Chauhan, Kumar & Taneja, (2011) “UREM-A UML-Based
Requirement Engineering Model for a Data Warehouse”, In Proceedings
of the 5th National Conference; INDIACom-2011, Computing For
Nation Development, New Delhi, India. ISSN 0973-7529 ISBN 978-93-
80544-00-7

[10] Lakshmanan, L. V. S., Pei, J. and Zhao, Y. 2003. QC-Trees: an efficient
summary structure for semantic OLAP. In Proc. ACM SIGMOD, pages
64–75.

[11] Mishra, D., Yazici, A., and Basaran, B. P. 2008. A Case Study of Data
Models in Data Warehousing. IEEE. 978-1-4244-2624-9/08

[12] Munawar, Naomie Salim, and Roliana Ibrahim. 2011. Toward Data
Quality Integration into the Data Warehouse Development. Ninth IEEE
International Conference on Dependable, Autonomic and Secure
Computing. 978-0-7695-4612-4/11 © 2011 IEEE Computer Sociaty.
DOI 10.1109/DASC.2011.194

[13] Munawar, Naomie Salim, and Roliana Ibrahim. 2011. Toward Data
Warehouse Quality through Integrated Requirements Analysis.
ICACSIS 2011. ISBN: 978-979-1421-11-9.

[14] Munawar, Naomie Salim, and Roliana Ibrahim. 2012. Comparative
Study of Quality Dimensions for Data Warehouse Development : A
Survey. A. Ell Hassanien et al. (Eds.): AMLTA 2012, CCIS 322, pp.
465–473, 2012. © Springer-Verlag Berlin Heidelberg 2012

19

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

[15] Aouiche, K. 2005. Automatic selection of indexes in data warehouses.
Research report, Laboratory ERIC Lumière Lyon2University, Doctoral
School in Cognitive Science, December 8, 2005.

[16] Serrano, M.A., Calero, C., Sahraoui, H.A., Piattini, M. 2008. Empirical
studies to assess the understandability of data warehouse schemas using
structural metrics.

[17] Si-Said, S., Prat, N. 2003. Multidimensional Schemas Quality: Assessing
and Balancing Analyzability and Simplicity, ER 2003 Workshops, 140–
151.

[18] Sismanis, Y., Deligiannakis, A., Kotidis, Y., and Roussopoulos, N.
2003. Hierarchical dwarfs for the rollup cube. In Proc. DOLAP, pages
17–24.

[19] Sismanis, Y. and Roussopoulos, N. 2004. The complexity of fully
materialized coalesced cubes. In Proc. VLDB, pages 540–551.

[20] Cuzzocrea, A. 2006. Improving range-sum query evaluation on data
cubes via polynomial approximation.Data & Knowledge Engineering,
Vol. 56, No.2, p. 85-121.

[21] Theodoratos, D., and Sellis, T. Designing data Data warehouses. DKE,
31(3):279–301, 1999.

[22] Trujilo, J.C., Palomar, M. and Gomes, J. 2000. Applying Object-
Oriented Conceptual Modeling Techniques to the design of
Multidimensional Databases and OLAP Application in H. Lu and A.
Zhou (Eds.): WAIM 2000, LNCS 1846, pp. 83–94, 2000._c Springer-
Verlag Berlin Heidelberg 2000

[23] Wang, W., Lu, H., Feng, J., and Yu, J. X. 2002. Condensed cube: An
efficient approach to reducing data cube size. In Proc. ICDE, pages 155–
165.

[24] W.P. Yan and P. Larson. Eager and lazy aggregation. In Proc. 21st
VLDB, pages 345–357, Zurich, Switzerland, 1995.

[25] Muralikrishna, M. and DeWitt, D.J. 1998. Equi-depth Histograms for
Estimating Selectivity Factors for Multi-Dimensional Queries. In Proc.
ACM Sigmod Conf., pages 28–36, Chicago, IL.

[26] Peralta, V., Illarse, A., and Rugia, R. 2003. Towards the Automation of
Data Warehouse Logical Design: a Rule-Based Approach

[27] B. P. Basaran, “A Comparison Of Data Warehouse Design Models”, A
MASTER'S THESIS in. Computer Engineering, 2005.

[28] D. L. Moody, M. A. R. Kortink, “From ER Models to Dimensional
Models Part II: Advanced Design Issues”, Journal of Business
Intelligence, pp.1-12, 2008.

[29] F. Teklitz, “The Simplification of Data Warehouse Design”, Sybase,
2000.

[30] M. Levene, G. Loizou, “Why is the Snowflake Schema a Good Data
Warehouse Design?”, In Source, Information Systems, pp. 225-240,
2003.

[31] N. Arfaoui, J. Akaichi. “Data Warehouse : Conceptual and Logical
Schema – Survey. International Journal of Enterprise Computing and
Business Systems. ISSN (Online) : 2230-8849. Vol. 2 Issue 1 January
2012

[32] Theodoratos, D. and Bouzeghoub, M.2000. A General Framework for
the View Selection Problem for Data Warehouse Design and Evolution.
In Proc. DOLAP, pages 1–8, Washington, DC.

[33] Vassiliadis, P. 2000. Gulliver in the land of data warehousing: practical
experiences and observations of a researcher. In Proc. DMDW, pages
12/1–12/16, Stockholm, Sweden.

[34] Jamil, S., and Ibrahim, R. 2009. Performance Analysis of Indexing
Techniques in DW. International Conference on Emerging
Technologies. 978-1-4244-5632-1/09 ©2009 IEEE

[35] Poolet , M. A. 2008. Indexing the data warehouse. SQL server magazine
August 2008.

[36] Bellatreche, L., Mohania., M., Karlapalem., K., and Schneider., M.
2000. What can Partitioning do for your Data Warehouses Or Data
Marts. 0-7695-0789-1/00 ©2000 IEEE

[37] http://download-east.oracle.com/docs/html/A76994_01/indexes.htm

[38] S. B. Davidson, “Indexing, Sorting and Hashing”, October 23, 2008,
www.seas.upenn.edu/~cse330/docs/14-Indexing.ppt

[39] A. Aizawa, “A method of cluster-based indexing of textual data”, In
Proceedings of the 19thinternational conference on Computational

linguistics - Volume 1, International Conference On Computational
Linguistics, Taipei, Taiwan, pp. 1 – 7, 2002

[40] S. Delmarco, “ Hash Indexes”, January 27, 2006
http://www.fotia.co.uk/fotia/FA.03.Sql2KHashIndexes.01.aspx

[41] http://en.wikipedia.org/wiki/Hash_table

[42] Ozsu, M. T. & Valduriez, P. 1991. Principles of Distributed Database
Systems. (pp. 657). Prentice-Hall, Inc. Upper Saddle River, NJ, USA

[43] Golfarelli, M., Maio, D., and Rizzi, S. 2000. Applying vertical
fragmentation techniques in logical design of multidimensional
databases. In Proc. DaWaK, pages 11–23.

[44] Gupta, H. 1997. Selection of Views to Materialize in a Data Warehouse.
In Proc. ICDT, pages 98–112, Delphi, Greece.

[45] Harinarayan, V., Rajaraman, A., and Ullman, J. 1996. Implementing
Data Cubes Efficiently. In Proc. ACM Sigmod Conf., pages 205–216,
Montreal, Canada.

[46] Hou, W. and O¨ zsoyoglu, G. 1991. Statistical Estimators for Aggregate
Relational Algebra Queries. ACM Transactions on Database Systems,
16(4):600–654.

http://en.wikipedia.org/wiki/Hash_table

