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Abstract—To make an effective data warehouse logical 

design which is related to system performance, it is 

important to manage an appropriate methodology for data 

fragmentation, indexing and materialized view. Executing 

a query in a data warehouse may take hours or days to run 

without the proper optimization technique. This paper 

proposed a framework on integrating quality, deliverables 

in conceptual design as an input into the logical design, 

and the optimization technique to run query, to treat as 

continuous improvement from preceeding stage. 
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I.  Introduction 
A data warehouse (DW) integrates data from external 

sources and from internal OLTP (On Line Transactional 
Processing) to support analytical query processing. This 
analytical query processing can be used by an enterprise to 
achieve a great competitive advantage. OLAP (On-Line 
Analytical Processing) tools represent data in a 
multidimensional version, enabling business users to 
formulate queries and perform analysis. 

Quality issues raised by DW are crucial. For an effective 
DW system, the quality aspects should be incorporated 
properly at the various levels of DW development including in 
logical design phase.  

Logical design is the most attracted phase with strongly 
impacts to the system performance. It is aimed at deriving out 
of the conceptual schemata the data structure that will actually 
implement the data mart or DW by considering some sets of 
constraints (e.g., concerning disk space or query answering 
time [22]). During logical design the designer defines which 
structures will be used to store information and how their 
performance can be optimized. 

An acceptable (or good) DW performance is one of the 
important features that must be guaranteed for DW users. For 
this reason, providing means for increasing the performance of 
a DW for analytical queries is one of the important research 
and technological areas. 
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In this paper, we study logical design and practical issues 
related to the design of multidimensional modeling. The 
framework for investigation is I-LogiQ (Integrated Logical 
Design and Quality), a logical model for OLAP systems that 
extends our earlier proposal [12; 13; 14]. This model includes 
a number of concepts that optimize the technique to run query 
using indexing, materialized view, and fragmentation, 
commonly used in multidimensional database. 

The paper is structured as follows. Section 2 describes 
related research. Section 3 presents the proposed framework. 
Finally, conclusion is described in section 4. 

II. Related Works 
Due to the increasing complexity of DWs, continuous 

attention must be paid for evaluation of their quality 
throughout their design and development [6]. It is also very 
important to consider quality issues at various levels of models 
including logical models. Quality of the DW logical models 
has been assured by proposing several metrics to evaluate the 
quality of star schemas at logical level. These proposed 
metrics were validated theoretically and empirically [17, 16]. 
[17] have proposed metrics for measuring multidimensional 
schemas analyzability and simplicity. Nevertheless, the 
metrics proposed in these approaches have not been 
empirically validated and consequently, have not proven their 
practical applications [4]. Recently, [16] proposed a set of 
metrics for assessing the understandability of DW schemas 
using structural metrics and also validated theoretically and 
empirically through a family of experiments. 

Our proposed frameworks mainly focus on integrating 
quality and deliverables in preceding stage (conceptual stage) 
as an input into the logical design in order to treat as a 
continuous improvement in the next phase. In a DW where 
data is processed in stages, and where the quality of data at 
one stage is dependent on the DQ measurements in preceding 
stages, DQ can be assessed and monitored continuously in 
order to guarantee high quality levels. As a result, DQ is not 
only an integral part of DW project, but will remain a 
sustained and ongoing activity [12]. 

III. Proposed Framework 
The logical design can be used for many purposes [2]: (i) 

as an intermediate representation between the conceptual 
design and the physical design, providing an operational view 
of the DW without necessarily dealing with performance nor 
physical representation of data, (ii) as a reference schema from 
which the physical design starts and to which the benefit of the 
selected materialized views is balanced, (iii) as a support to 
control the DW evolution both at its client and source levels. 
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The logical design of the DW serves to define the structure 
to ensure an efficient access to information. It can be 
presented as relational or multidimensional structure that takes 
as input the conceptual schema representation, the information 
requirements, the source database and non-functional 
requirements [26] 

In relational implementations, the so-called star, 
constellation, and snowflake schemata are widely accepted to 
manage data cubes and are supported by various vendors. 
Concerning multidimensional implementations, several 
efficient multidimensional data structures such as condensed 
cubes, dwarfs, and QC-Trees have been proposed to manage 
data cubes. Comparison between relational implementation 
and multidimensional implementation can be seen in Table I, 
Table II and Table III. 

TABLE I.  COMPARISON OF RELATIONAL IMPLEMENTATION FOR 

MULTIDIMENSIONAL MODELING [11] 

 Star 

Schema 

Fact Constellation 

Schema 

Snowflake 

Schema 

Efficiency High High Moderate 

Usability High Moderate Moderate 

Reusability Low Low High 

Flexibility High High Moderate 

Redundancy High High Low 

Complexity Low Moderate Moderate 

TABLE II.  THE COMPARISON  BETWEEN DW SCHEMAS IN TERM OF 

ADVANTAGES AND DRAWBACKS [31] 

DW Schema Advantages Drawbacks 

Star Schema  It is the simplest 

structure [28] 

 It reduces the number of 
tables [27] 

 It reduces the number of 
relationships between 

the tables [27] 

 It reduces the number of 

joins required in user 
queries [27] 

 It speed up query 

performance 

 It can be very 

inflexible [29] 

 For every gigabyte 
of row data a 

schema will require 
at least an additional 

gigabytes for 

aggregations [29] 

 The amount of 

development 
maintenance  effort 

needed to manage 

schema oriented 
DW [29] 

Fact Constellation 

Schema 
 It reuses the dimension 

tables to save storage 
space [30] 

 It may not be useful 

for small 
organization 

because of its 

complexity [36] 

Snowflake Schema  It shows explicitly the 

hierarchical structures 

of each dimension [29] 

 It is intuitive and easy 

to understand [31] 

 It can accommodate for 

aggregate data [31] 

 It is easily extensible by 

adding new attributes 

without inferring with 
existing database 

programs [31] 

 It adds unnecessary 

complexity [29] 

 It reduces query 
performance [29] 

TABLE III.  COMPARISON OF DIMENSIONAL IMPLEMENTATION FOR 

MULTIDIMENSIONAL MODELING  

 Condensed Cube 

[23, 5] 
Dwarf [18, 19] QC-Trees [10] 

Size 

Much smaller size 
of non-condensed 

cube 

Highly 

compressed and 

clustered data 
cubes 

Very compact 

data structure 

Compress

ion 

 Fully pre-

computed cube 
without 

compressio 

 Neither 
decompression or 

further 
aggregation is 

required when 

answering queries 

 Complete 

architecture 
that support 

queries, 

updates and 
roll-up data. 

 A tunable 
granularity 

parameter 

that controls 

the amount 

of 

materializatio
n performed 

 It is elegant and 

lean in that the 
only 

information it 

keeps on 
classes are their 

upper bound 

and measure(s) 

 Better 

compression 

and 

construction 

time than 
Dwarf 

 

Traditional database systems are inadequate for 
multidimensional analysis since they are optimized for on-line 
transaction processing (OLTP), which corresponds to large 
numbers of concurrent transactions, often involving very few 
records. Conversely, multidimensional database systems 
should be designed for the so-called on-line analytical 
processing (OLAP), which involves few complex queries over 
very large numbers of records. Current technology provides 
both OLAP data servers and client analysis tools. OLAP 
servers can be either relational systems (ROLAP) or 
proprietary multidimensional systems (MOLAP).  

Unlike OLTP systems where the logical data schema is 
hidden underneath an application layer, the logical 
multidimensional (MD) schema of an OLAP system is directly 
used by the end user to formulate queries. Thus, the MD 
schema is crucial as it determines the type of queries the user 
can formulate. One of the main problems in MD data models 
occurs when the modeled OLAP scenarios become very large 
since the dimensionality increases significantly, and therefore, 
this leads to extremely sparse dimensions and data cubes [22]. 
The system architecture for DW logical designs can be seen in 
Figure 1. 

The way data are actually stored gives rise to different 
types of OLAP: relational OLAP (ROLAP), multidimensional 
OLAP (MOLAP), and hybrid OLAP (HOLAP). The choice of 
ROLAP or MOLAP should depend on the query complexity 
and performance. For more complex queries and quicker 
response times, MOLAP should be used because it stores the 
data in multidimensional databases (cubes) that provide 
extensive OLAP capabilities. In ROLAP, on the other hand, 
the data are stored as relational tables and the ROLAP engine 
generates MD views on the fly. But the ROLAP model works 
fine when query complexity is not that high and response time 
demands are not that great.  
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Figure 1.  Proposed quality-based framework for logical design in DW 

development  

DW consists of a huge fact table and multiple dimension 
tables. Queries executed on the top of this schema, typically 
perform aggregations on the fact table based on selections 
among the available dimension levels. The growth of the DW 
volume can degenerate OLAP query performance [20]. As a 
result, queries frequently submitted to the data warehousing 
environment no longer ensure satisfactory response times to 
users. 

To reduce the cost of execution caused by decisional 
complex queries, implying a very voluminous fact table which 
is linked through a multitude of joins with the dimension 
tables, we can use structures and optimization techniques such 
as: indexes, materialized views and / or fragmentation of data 
[15]. Without optimization techniques, queries may take hours 
or days to run. This is due to the high complexity of queries. 

Materialized views are physical structures that improve 
data access time by precomputing intermediary results. Then, 
user queries can be efficiently processed by using data stored 
within views and do not need to access the original data. 
Nevertheless, the use of materialized views is restricted by 
factors like space availability and query response time. Not all 
possible views for a multidimensional cube can be 
materialized because the number of views grows exponential 
to the number of cube dimensions. In general, a cube with n 
dimensions has 2n possible views [7]. 

A materialized view is much richer in structure than an 
index since a materialized view may be defined over multiple 
tables, and can have selections and GROUP BY over multiple 
columns. In fact, an index can logically be considered as a 
special case of a single-table, projection only materialized 
view [1]. This richness of structure of materialized views 
makes the problem of selecting materialized views 
significantly more complex than that of index selection.  

A crucial problem related to view materialization is that of 
accurately estimating the actual cardinality of each view [49; 
48]. Since the number of possible views which can be derived 
by aggregating a cube is exponential in the number of 
attributes, most approaches assume that a constraint on the 
total disk space occupied by materialization is posed, and 
attempt to find the subset of views which contemporarily 
satisfies this constraint and minimizes the workload cost [43; 
44; 45]. If the DW has already been loaded, view cardinalities 
can be quite accurately estimated by using statistical 
techniques based, say, on histograms [47] or sampling [46]. 
However, such techniques can not be applied at all if the DW 
is still under development, and the estimation of view 
cardinalities is needed for design purposes. 

Indexing a DW is very tricky [34]. If there are few indexes, 
the data loads up quickly but the query response time is slow. 
If there is too many indexes, the data loads slowly and need 
more storage space but the query response is good. So there is 
a trade-off between the number of indexes built and response 
time of queries Indexing in any database, transactional or 
warehouse, most often reduces the retrieval time of query 
results [35]. Different indexing techniques have been 
developed which are being used in for fast data retrieval in 
DW environments. Brief description of a few indexing 
techniques is given below. 

TABLE IV.  COMPARISON OF INDEXING TECHNIQUES [34]  

 

Indexing 

Techniques 

Advantages Drawbacks 

Bitmap indexing  Widely used in DW 
environment [37] 

 Reduced response time for 
large classes of ad-hoc 

query 

 Reduced storage 
requirements as compared 

to other indexing 
techniques [37]. 

 Dramatic performance 
gains on hardware with a 

relatively small number of 

CPUs or a small amount of 

memory [37]. 

 Efficient maintenance 

 It works pretty slow 
on high cardinality 

column data. 

 A modification to a 

bitmap index 

requires more work 
on behalf of the 

system. 

 The concurrency for 
modifications on 

bitmap indexes is 
outrageous. 

Cluster indexing  It can be formed dense and 
sparse to get optimized 

performance. 

 Good for range based 

queries but requires sorted 

data. 

 If data is not sorted 
then cost of sorting 

is also added up.  

 Also Insertions often 

requires reordering 

of data, so it is 
costly operation in 

terms of time and 
resources in Data 

ware housing [38, 

39]. 

The way data are stored

Star Canstellation Snowflake

Multidimensional Modeling

MOLAP

§ Data are stored in 

multidimensional format

§ OLAP engine resides in a 

special server

ROLAP

§ Data are stored in relational 

format and presented 

virtually in multidimensional 

format

§ OLAP engine resides at the 

client side

HOLAP

§ Non aggregated data are 

stored in relational database 

while the summarized, 

aggregated pieces of 

information are stored in 

MOLAP

Relational Implementation

Cube Dwarf QC-Tree

Dimensional Implementation

Technical Quality

Content Access

Business Quality

Non-Functional Functional

Quality Driver

Data Quality Tools

Indexing

Informational Quality

Correct Complete Dimensional Fact 

Model (DFM)
Class Diagram

Deliverables from conceptual design as input

View Materialization

Fragmentation

Data SourcesETL
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Indexing 

Techniques 

Advantages Drawbacks 

Hash-based 
indexing 

 It reduces a large amount 
of data down to a 

reasonable number by 

transforming it through a 
hash function and indexing 

that number [40]. 

 It reduces the average 
lookup cost by a careful 

choice of the hash 
function, bucket table size, 

and internal data structures 

[41].  

 It does not need the key to 

be sorted order.  

 Hash-based indexing 

technique is best for 

equality selections. 

 Bad hash function 
leads to collusion. 

 Hash-based indexing 
technique cannot 

support range 

queries. 

 Static hashing can 

leads to long chains. 

 Reverse of hash is 

still impossible. 

 

Although indexing can help in providing good access 
support at the physical level, the number of irrelevant data 
retrieved during the query processing can still be very high. 
The horizontal fragmentation aims to reduce irrelevant data 
accesses [42; 36]. Moreover, fragments can be allocated to 
data marts if the data in data marts are derived from the 
warehouse data (i.e. top-down approach). Another advantage 
of allowing partitioning of a warehouse data is that an OLAP 
query can be executed in a parallel fashion [36] 

Executing an OLAP query in a DW can be very expensive, 
particularly on large warehouse data, if the data is not modeled 
properly.  Moreover, if OLAP queries need only a portion of 
data, it is advisable to fragment data so that a set of queries 
can be executed on each fragment as far as possible, thus 
query response time can be minimized [36]. 

In the relational DW context, there are three fragmentation 
types [42]: vertical fragmentation, horizontal fragmentation 
and hybrid fragmentation (horizontal fragmentation followed 
by vertical, or vice versa). Vertical fragmentation splits a 
relation R into sub-relations that are projections of R with 
respect to a subset of attributes. It consists in grouping 
together attributes that are frequently accessed by queries. 
Vertical fragments are built by projection. The original 
relation is reconstructed by joining the fragments. Horizontal 
fragmentation divides a relation into subsets of rows using 
query predicates. It reduces query processing costs by 
minimizing the number of local accessed instances. Horizontal 
fragments are built by selection. The original relation is 
reconstructed by fragment union. 

There are two versions of horizontal fragmentation [42]: 
primary and derived. Primary horizontal fragmentation of a 
relation is performed using attributes defined on that relation. 
This fragmentation may reduce query processing cost of 
selections. Derived horizontal fragmentation, on the other 
hand, is the fragmentation of a relation using attribute(s) 
defined on another relation(s). In other word, the derived 
horizontal fragmentation of a table is based on the 
fragmentation schema of another table(s). 

IV. Conclusion 
In this paper, we have proposed a framework based on 

logical model for integrating data quality dimensions and 
deliverables in preceding stage (conceptual stage: dimensional 
fact model and class diagram) as an input in order to treat as a 
contionus improvement in logical stage. In a DW where data 
is processed in stages, and where the quality of data at one 
stage is dependent on the DQ measurements in preceding 
stages, DQ can be assessed and monitored continuously in 
order to guarantee high quality levels. A key step in logical 
design is optimization technique to run query among data 
fragmentation, indexing and materialized view. This paper 
shows how to choose the proper technique to run query 
effectively 
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