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Abstract—The relative neighborhood graph of a collection of 

objects assigns an edge to a pair of objects (A, B), provided that 

no other object is closer to both A and B, than A and B are to 

each other. This graph was originally proposed for the purpose of 

extracting the low-level visual perceptual structure of two-

dimensional dot patterns. During the past thirty-four years the 

relative neighborhood graph has been applied to a multiplicity of 

different disciplines, and sometimes to several problems within a 

single discipline. This paper provides a review of some of these 

applications, including: wireless network communications, 

archaeological network analysis, grid typification in cartography, 

data mining for geographic information systems, shape analysis, 

image morphology, polygon decomposition, the extraction of 

primal sketches in computer vision, the reduction of the size of 

the training set in instance-based machine learning, the design of 

non-parametric decision rules, support-vector machines, cluster 

analysis, manifold learning, the design of nonparametric tests of 

the independence of dissimilarity matrices, the design of data-

depth measures, testing class separability, estimating two-

dimensional voids in the cold dark matter universe, 

multidimensional data-base indexing, image retrieval, adaptive 

grid generation for solving partial differential equations, clinical 

case retrieval in health-care systems, modeling road networks in 

transportation science, modeling leaf venation patterns in 

biology, plasmodium machines, swarm intelligence, distributed 

motion coordination, visualizing metabolic reactions in 

chemistry, tracking defects in crystal structures, and developing 

visualization tools such as topological zooming as well as Tukey 

scagnostics. 
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I.  Introduction 
At the International Conference on Pattern Recognition in 

Oxford University in 1979, I presented a graph I named the 
relative neighbourhood graph (RNG), and its application to 
the extraction of a visual primal sketch of a dot pattern [73]. In 
1980 I published a paper on this graph in the journal Pattern 
Recognition [70]. Since then the graph has been applied to 
many problems in a variety of disciplines. The ramifications of 
the RNG in the 1980s were treated in [37]. Here I briefly 
revisit these applications and focus on more recent results. 

   Godfried T. Toussaint 

   New York University Abu Dhabi 
   United Arab Emirates 

Two objects are relative neighbours if they are at least as 
close to each other as they are to any other object. This 
definition presupposes the existsnce of a measure of closeness 
(similarity) that depends on the specific application. Given a 
finite collection of objects, the relative neighbourhood graph 
(RNG) is defined as the graph G(V, E), in which V denotes the 
set of n objects and E the set of m edges, such that there exists 
an edge eij in E that connects two objects vi and vj in V, if and 
only if vi and vj are relative neighbours. More formally, graph 
G(V, E) is an RNG provided there exists an edge eij of weight 
dij between vi and vj iff dij ≤ max(dik, djk), ∀  k ≠ i, j, i ≠ j. For a 
more concrete geometric description let the objects be points 
in the plane, let the dissimilarity be defined as the Euclidean 
distance between the points, and refer to Fig. 1. For the two 
points vi and vj construct the circles with centers at vi and vj 
and radius equal to the distance dij  between vi and vj (left). 
The intersection of the two circles (right) determines a region 
of proximity between vi and vj called a lens (sometimes 
referred to as a lune in computational geometry). Two points vi 
and vj are at least as close to each other as they are to any other 
point in a set, if and only if, the lens determined by vi and vj 
does not contain any other point of the set. Hence to construct 
the RNG of a set of points, two points are joined with an edge 
if, and only if, their lens is empty.  

Figure 1.  Geometric definition of relative neighbourhood graph. 

The RNG belongs to the very broad family of proximity 
graphs [66]. Within this large family the RNG belongs to a 
hierarchy of distinguished planar proximity graphs established 
in [70], where it was shown that the RNG contains the 
minimum spannig tree (MST) as a subgraph, and is a subgraph 
of the Gabriel graph, which in turn is contained in the 
Delaunay triangulation (DT) (See also [53]). The MST, which 
contains the nearest neighbour graph [57], is a tree that spans 
all the points and has minimum total length [53]. The Gabriel 
graph (GG) may be defined analogously to the RNG provided 
that the lens determined by two points vi and vj is substituted 
for the smallest disc that contains these two points [53]. The 
Delaunay triangulation is a triangulation of the points with the 
property that every disc determined by three points that form 
the vertices of a triangle contains no other points. Thus the 
hierarchy of connected graphs is as follows: 
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                     ⊆ ⊆ GG ⊆ DT                          
 

An illustrative example of this proximity graph hierarchy 
for a set of points in the plane is illustrated in Fig. 2. Note that, 
apart from the DT, the other three graphs capture some of the 
perceptual structure of the configuration of points. 

 

Figure 2.  From top to bottom: A set of points, the Minimum Spaning Tree, 

Relative Neighborhood Graph, Gabriel Graph, and Delaunay Triangulation. 

II. Applications 

A. Vision 
The MST in Fig. 2 (second from the top) has long been 

used as a powerful tool for detecting and describing Gestalt 
clusters, and is more powerful than the classical approaches to 
cluster analysis [87]. In the context of vision it is a simple 
bottom-up computational model of what David Marr called a 
primal sketch [52], [58], [67]. Nevertheless, this method 
suffers from a drawback when it is required to extract the 
perceptual structure of certain dot patterns. The MST “views” 
everything in the world as a tree, and hence perceived cycles 
in a pattern may not be realized. The RNG (third from top in 
Fig. 2) was proposed to remedy this wakness [70]. It “listens” 
to the data more than the MST: if the data are tree-like the 
RNG will mimic the MST, if the data points are distributed 
evenly on a circle it will output a cycle, and if the data are 
more densely scattered it will sometimes output the DT [70].  
The GG (fourth from the top) contains a few more edges than 
the RNG, and is also a powerful model of a primal sketch. 
Finally, the DT (bottom) does not “listen” to the data, always 
contains the edges on the convex hull of the points, and hence 
fails (on its own) to extract the structure of dot patterns with 
no convex boundaries. Nevertheless, in conjuction with 
additonal techniques, the DT may also be very useful [9]. 

The MST, RNG, GG, and DT are all connected graphs, 
and therefore do not by themselves necessarily yield structures 
that accord with human perception, for data consisting of 
perceived disconnected components. One modification to 
handle such situations consists of deleting edges that are much 
longer than neighbouring edges [87]. However, this entails the 
tuning of parameters. An alternative approach consists of 
defining structures that do not have parameters that need to be 
tuned, such as the sphere-of-influence graph [67]. However, 
such graphs are beyond the scope of this paper. 

B. Cluster Analysis 
The seminal paper of Charles Zahn [87] that established 

the MST as as a powerful data mining tool, stimulated much 
research on the application of other graph-theoretic methods, 
such as MOSAIC [23], to the analysis of complex data that 
challenged traditional clustering methods [79]. Urquhart [77] 
applied the heuristics that Zahn employed  with the MST, to 
the RNG, and concluded that better results are obtained when 
the MST is substituted with the RNG. Correa and Lindstrom 
[25] explore the family of empty-region proximity graphs 
known as β–skeletons, as tools for cluster analysis, and show 
that the RNG performs better than conventional approaches 
based on k-nearest neighbors or global scale parameters. 

A recurring problem in cluster analysis is to determine for 
a given data set what the best number of clusters should be. In 
traditional methods the number of clusters is either specified 
in advance by the user, varies depending on the heuristic used, 
or yields a hierarchy (dendrogram) of all possible partitions.  
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Muhlenbach and Lallich [55] extend the work of Zahn [87] 
and Urquhart [77] by proposing a method, that incorporates 
the RNG, for finding the “ideal” number of clusters.  

C. Shape Boundary Detection 
A problem somewhat related to cluster analysis of point 

data is the estimation of the “boundary” of a dot pattern. 
Whereas the minimum spanning tree serves well as a model of 
the skeleton or “medial axis” of a line-like dot pattern, the 
concept of “boundary” refers to the external structure of a 
dense dot pattern, also called the shape hull [69] and 
nonconvex hull in the context of the computation of 
scagnostics in statistics [85]. If a dot pattern has “holes” it also 
has internal boundaries. The RNG has also been applied to the 
extraction of hole boundaries in dot patterns [75]. 

D. Visualization and Computer Graphics 
When graphs contain a very large number of edges they 

may become impossible to visualize due to the fact that the 
limitations on line thickness tend to eliminate the blank area of 
the drawing, rendering an amorphous connected blob. In such 
cases a sparse subgraph of the original graph that preserves its 
fundamental shape may help to visualize the structure of the 
original graph. Gansner, Koren, and North [30] propose the 
RNG as a tool for this purpose. See also [79]. 

E. Archaeology 
The study of spatial relationships in archaeology has been 

tackled recently using tools from graph theory (network 
analysis) [17]. Jiménez [38], and Jiménez and Chapman [39] 
applied the RNG to the exploration of meanigful relationships 
in point sets that represent archaeological sites or artefacts. 
They conclude that the RNG can reveal these contextual 
relationships more effectively than the standard methods based 
on linear distances, such as nearest neighbours. 

F. Natural Computing 
The term natural computing is used to mean several types 

of computation. Here it is used to mean that the computation is 

performed with natural materials or forces of nature (physical, 

chemical, or biological), such as gravity, DNA molecules, 

swarms, or bacteria. Andrew Adamatzky [6] has shown that 

when slime mold such as plasmodium is placed on a material 

surface that contains point locations with sources of nutrients, 

the foraging behavior of the mold generates the RNG in the 

form of a protoplasmic network. Furthermore, the experiments 

in [6] demonstrate that the mold constructs all the proximity 

graphs of the hierarchy in Equation 1, and in precisely the 

shown graph inclusion order. Slime mold has also been shown 

to compute the shape hull of a set of planar points [3]. 

G. Cosmology 
One of the central problems in cosmology is estimating the 

cosmological parameters of the universe. A relevant property 

in this regard is the size and location of voids in the large-scale 

distribution of the galaxies. Ueda and Takeuchi [75] used the 

RNG in for the identification of two-dimensional voids. 

Furthermore, their algorithm was able to make semantic 

connections between this graph-theoretical approach and 

relevant physical interpretations. 

H. Urban Planning 
Daisuke Watanabe [83] applied proximity graphs as modesl of 

network construction to the study of grid road network 

patterns of the major cities in the United States, and found that 

the edges of the RNG include most of the grid roads. 

Furthermore, another study by Watanabe to evaluate both the 

configuration and travel efficiency of proximity graphs as 

transportation networks led to the conclusion that the network 

distance on the RNG is similar to the rectilinear distance in 

terms of both edge length and travel distance [84]. Aldous and 

Shun [8] introduce and motivate statistics computed on the 

RNG and other proximity graphs applied to route-length 

statistics with application to transportation networks. The 

RNG has also been computed using slime mould in the context 

of transportation networks such as highways [4], [5]. 

I. Machine Learning 
In the area of machine learning, RNGs have been applied 

to several different aspects of the problem. One of the earliest 
applications is the reduction of the size of the training set [66]. 
For this purpose each and every point in the training data is 
first marked if it, and all its adjacent graph neighbours in the 
RNG, belong to the same class [50], [59]. The reasoning 
behind this approach is that such points are not close to the 
decision boundaries between the classes, and may thus be 
discarded without affecting these boundaries. It has been 
shown experimentally that the RNG can reduce the size of the 
training set without significantly decreasing classification 
accuracy [60]. 

The RNG has been applied to the design of nonparametric 
classification rules in instance-based learning [51]. In this 
context the classical k-nearest neighbour rule assigns an 
unknown instance by means of a majority vote amongst its k 
nearest neighbours, where k remains fixed after it is pre-tuned 
to the data at hand. The RNG-decision rule, on the other hand, 
assigns an unknown instance by means of a majority vote 
amongst its adjacent neighbours in the RNG (its relative 
neighbours). In this rule the number of neighbours used in 
each decision is not fixed in advance, and the choice of 
neighbours does not depend strictly on the distances 
themselves, but rather varies depending on the local density 
and geometric structure of the data around the instance to be 
classified [59]. 

One of the most powerful machine learning algorithms in 
terms of the classification accuracy is the support vector 
machine (SVM) [65]. Its drawback is that the complexity of 
training the SVM grows prohibitively as a function of the size 
of the training data. Hence it is desired to speed up the SVM 
with this particular goal in mind [29], [50]. 

Zighed, Lallich, and Muhlenbach [89] use the RNG to develop 

a statistical test they call the separability index for application 

to supervised learning. Their test is based on comparing the 
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relative weight of the edges in the RNG that connect data 

points of different classes, to the expected interval of a random 

distribution of the data labels on all the RNG edges. If the two 

values are not significantly different then no neighbourhood-

based method will yield a reliable prediction model. 

J. Adaptive Grid Generation 
Grid generation is an essential technique used in numerical 

methods for solving partial differential equations. Berger [14] 
utilizes proximity graphs such as the minimum spanning tree 
to design data structures and algorithms for the automatic 
generation of adaptive subgrids in this context, and suggests 
that applying RNG’s would yield better results. 

K. Measuring Dissimilarity 
In psychology, biology, anthropology, and the study of the 

evolution of cultural objects, such as musical rhythms, one is 
faced with the task of determining whether two dissimilarity 
matrices are significantly correlated. The classical approach to 
such an analysis calculates the statistical tests by taking into 
account all the pairwise dissimilarities, disregarding whether 
these dissimilarities are large or small. Levkovitch [47] 
proposed a modification of the classical methods by first 
computing the RNG of all the pairwise dissimilarities, and 
then calculating the statistical tests with only the most relevant 
dissimilarities, i.e., those corresponding to edges in the RNG. 
He showed that many of the deficiencies of the classical 
approaches are largely overcome by icorporating the RNG. 

In data-base indexing [31], image retrieval [32], and 
cluster analyses in general [10], the choice of the similarity 
measure employed may affect the results obtained, motivating 
the determination of which similarity measures yield similar 
results. Abdesselam and Zighed [1] propose a statistical test 
for this purpose based on a topology that incorporates the 
RNG. See also [88]. 

Adamatzky [2] studied how β–skeletons lose their edges as 
a function of β, and used this dependense to design a test to 
discriminare between random and non-random planar sets. 

L. Percolation Theory 
Percolation theory is useful for the description of a variety 

of physical phenomena, and it is also the simplest model of a 
physical process that displays a phase transition in porous 
materials. Consider the graph of an infinite square planar 
lattice consiting of vertices connected with edges (see Fig. 3), 
and color each vertex (site percolation) or edge (bond 
percolation) black, with probability p. The black vertices 
(edges) may be considered as “occupied” sites (edges). A 
central question in percolation theory concerns the properties 
of the connected components of the black vertices (edges) as a 
function of p. In particular, what values of p ensure that with 
probability 1 there exists a connected component of infinite 
size? The smallest such probabilities are referred to as site and 
bond percolation thresholds. There has been much interest in 
recent years in studying these thresholds for graphs other than 
simple lattices. For the RNG, Billiot, Corset, and Fontenas 
[16] established by analytic means the existence of nontrivial 

site and bond percolation thresholds, and Melchert [54] 
determined the assymptotic degree and diameter of RNGs, and 
obtained estimates of the site and bond percolation thresholds. 
Percolation properties have been investigated on other graphs 
related to the RNG, such as the Gabriel graph in [15]. See also 
[26] for further results along these lines. 

M. Wireless  Ad-Hoc Networks 
A network is a graph consisting of nodes connected with 

edges, such as the minimum spanning tree. The nodes may 

stand for a variety of entities, such as computers, and the 

edges are traditionally physical electrical wires. A wireless 

network is a network without wires, such as a cellphone, Wi-

Fi, or microwave network. In wireless ad-hoc (decentralized) 

networks all the nodes cooperate on an equal basis. In a 

mobile ad-hoc network (MANET) the nodes (devices) are 

mobile [13]. One of the central questions in such wireless 

communication networks is common to percolation theory: 

under what conditions on the location of the devices, their 

distance from each other (area of coverage), and the power of 

the nodes, does the network remain connected? Seddigh, 

Gonzalez, and Stojmenović [61] applied the RNG to the 

problem of minimizing the number of messages needed for 

broadcasting in wireless networks. Cartigny, Simplot, and 

Stojmenović [21] applied the RNG to minimum-energy 

broadcasting in ad-hoc networks with nodes of restricted 

battery power. See also [19], [20], [81], and [82] for alternate 

minimum-energy broadcasting protocols that make use of the 

RNG. The RNG has also been used to design “hole” avoiding 

protocols in wireless sensor networks [74]. 

 

Another central problem in sensor networks is the 

calculation of the coverage, a parameter that directly affects 

the quality of the service provided to the user. Li, Wan, and 

Frieder [48] provide an efficient distributed algorithm for 

calculating the best coverage, in which each sensor node 

locally constructs all edges in the RNG that are incident to that 

node. If every node in a wireless ad-hoc network has the same 

transmission radius, and the transmission radius is equal to the 

longest edge in the RNG, then the RNG can be locally 

constructed. Thus, the longest edge is called the critical 

transmission radius. Yi, Wan, Wang, and Su [86] compute 

asymptotic bounds on the critical transmission radius for the 

case when the network is modeled as a Poisson point process. 

N. Graph Theory 
The original definition of the RNG for points in the plane 

with the Euclidean metric, and using the lens as a region of 
neighbourhood [70], stimulated research to explore the graph-
theoretical properties of the RNG [76], and to generalize this 
graph using a variety of alternate definitions of neighbourhood 
regions, with non-Euclidean metrics, in higher dimensional 
spaces [36], [56].  

Toussaint [71] and ElGindy and Toussaint [28] generalized 
the RNG to the setting in which the points are vertices of a 
simple polygon, and visibility is taken into account when 
testing for lens inclusion. They proposed this generalization as 
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a tool for decomposition of polygons into simpler components 
in the context of pattern recognition. Similar extentions of the 
RNG were proposed and investigated by T.-H. Su and R.-C. 
Chang [62]. These RNG’s are referred to as constrained 
relative neighbourhood graphs (CRNG). Lingas and 
Mukhopadhyay considered the CRNG of a special type of 
simple polygon known as a histogram, and showed that it can 
be computed in O(n) worst-case time.

1
 Cimikowski obtains 

several combinatorial properties of a variant of the RNG, 
which he dubs RCG [24]. Specifically, a graph G(V, E) is an 
RCG iff there exists an edge eij of length dij between vi and vj 
iff dij < max(dik, djk), ∀  k ≠ i, j, i ≠ j. 

Kirkpatrik and Radke [45], Urquhart [77],Veltkamp [80], 
and Cardinal et al., [18], generalized the region of influence 
between two points by parameterizing the lens in Fig. 1 so that 
it can be either larger or smaller that the lens.  

Ichino and Sklanski [34] proposed that the region of 
influence between two points be the smallest isothetic 
hyperbox that contains the two points. This region has all its 
edges parallel to the axes of the space, and enjoys the property 
that the neighborhood relations are invariant to scaling of the 
axes coordinates. 

Urquhart [78] obtained a variant of the RNG (the Urquhart 
graph) by discarding an edge e from the DT if neither of the 
other two vertices that make up the two triangles in the DT 
that share e, are conatined in the lens of the endpoints of e. 
Since other vertices of the DT may still be included in the lens 
of e, the resulting graph (UG) is a supergraph of the RNG. See 
also [11], and [68] for comments on the UG, and how well it 
approximates the RNG. 

Chang, Tan, and Lee [22] generalized the definition of 
relative neighbors used in the RNG to obtain the k-RNG. 
Recall from Fig. 1 that in the RNG two points vi and vj are 
relative neighbors provided that the lens determined by vi and 
vj does not contain any other point of the set. In the k-RNG 
two points vi and vj are k-relative neighbors provided that the 
lens determined by vi and vj contains less than k points of the 
set. Clearly, with this notation, the RNG is the 1-RNG, and 
when k > n-3 the k-RNG is the complete graph. The authors 
obtain several properties of k-RNGs. Since complete graphs, 
and hence, k-RNGs with k > n-3 are Hamiltonian (admit a 
Hamiltonian cycle), and there exist RNGs that have no cycles, 
it is of interest to determine what is the least value of k for 
which the k-RNG is Hamiltonian. It is established in [22] that 
20-RNGs are Hamiltonian. 

Another generalization along these lines is the witness 
RNG that depends on two classes of points: the vertices V of 
the resulting graph, and the witnesses W that impose 
constraints on the presence of the edges [27]. The witness 
RNG of a point set V, with respect to a set W of witnesses, is 
the graph with vertex set V in which two points vi and vj in V 
are adjacent if and only if their lens does does not (in the 
negative version) contain a witness point. In the negative RNG 
witness graph (WRNG), witnesses remove edges between the 

                                                           
1 A. Lingas, and A. Mukhopadhyay, “A linear-time construction of the relative 

neighbourhood graph within a histogram,” The 4th International Workshop on 
Algorithms and Data Structures (WADS), LNCS 955, 1995, pp. 228-238. 

pairs of points. This witness concept has also been generalized 
to other proximity graphs [12]. 

Since the planar RNG is a subgraph of the planar DT, it 
contains a linear number of edges. In three dimensions on the 
other hand the DT may have a quadratic number of edges. 
However, Agarwal and Matousek [7] proved that in three 
dimensions the RNG has O(n

4/3
) edges. 

III. Computational Complexity 
The naïve brute-force algorithm for computing the RNG of 

n points constructs the lens for each of the Θ(n
2
) pairs of 

points, and then tests the remaining n-2 points for inclusion in 
each lens, thus leading to an O(n

3
) worst-case computational 

complexity. An O(n
2
) time algorithm was obtained in [70] by 

using the properties that the RNG is a subgraph of the DT, and 
that the DT contains a linear number of edges, and can thus be 
computed in O(n log n) worst-case time. This means that the 
only lenses that need to be tested for emptiness are those 
corresponding to the edges of the DT. Toussaint and Menard 
[72] showed using bucketing techniques that this O(n

2
) time 

algorithm can be made to run in approximately O(n) expected 
time for input points uniformly distributed in the unit square. 

J. Katajainen and O. Nevalainen [43] obtained an O(n
2
) 

time algorithm by first computing a supergraph of the RNG 
(the geographic neighbourhood graph), which contains O(n) 
edges, and then deleting the extra edges. They also show that 
if bucketing is applied the algorithm runs in O(n) expected 
time for points generated from a homogenous planar Poisson 
process. See also [41] for a similar approach. 

The fact that the DT can be computed in O(n log n) worst-
case time suggests that the RNG can be computed in o(n

2
) 

time. Suppowit [64] obtained an O(n log n) time algorithm for 
the RNG by first computing the DT in O(n log n) time, and 
then carefully eliminating edges from the DT. He also proved 
an Ω(n log n) time lower bound on the complexity of 
computing the RNG, thereby establishing the optimality of his 
algorithm. This approach was improved by N.-F. Huang [33] 
who showed that the RNG could be computed directly, via 
divide-and-conquer, in O(n log n) time while the DT is being 
constructed. Lingas [49] showed that the RNG could be 
computed directly from the DT in linear time. 

Another kind of triangulation is the 30º triangulation, 
which has the property that all its angles are greater than or 
equal to 30º. Keil, Tzvetalin, and Vassilev [44] show that the 
RNG is a subgraph of every 30º triangulation. 

For the case of three dimensions, Agarwal and Matousek 
[7] present randomized algorithms for computing the RNG 
that run in O(n

7/4+ε
) expected time for arbitrary points, and in 

O(n
3/2+ε

) expected time for points in general position. They 
also point out that these algorithms can be made deterministic 
with the same time complexities. See also [35]. 

Joe O’Rourke [56] explored the computational aspects of 
the RNG for the L1 and L∞ metrics. In particular, he showed 
that the RNG with the L1 metric in two dimensions, and with 
the L∞ metric in two and higher dimensions may be computed 
in O(n

2
 log n) worst-case time. D. T. Lee [46] improved the 
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complexity for the L1 metric in two dimensions to O(n log n). 
Jaromczyk and Kowaluk [36] give an O(n

2
) alsgorithm that 

computes the RNG in d dimensional spaces with Lp metrics for 
1 < p < ∞ when no three points of the input set form an 
isoceles triangle. See also [40] and [41] for additional 
algorithms that compute the RNG with Lp metrics. 

Su and Chang [63] propose an algorithm for computing the 
k-RNG in time O(n

5/3 
log n) for fixed values of k. 

IV. Concluding Remarks 
That the RNG is so successful at extracting meaningful 

information from data in so many widely disparate domains of 
knowledge is remarkable, and suggests that the RNG may be a 
good candidate for a universal model of neighborhood. This 
provides motivation for developing software implementations 
of practically efficient and robust algorithms for computing 
RNGs in all dimensions for a wide variety of measures of 
distance and dissimilarity. It is noteworthy that the only 
regular tilings that exist in the plane, the triangular, square, 
and hexagonal tessellations in Fig. 3, are all realized by the 
RNGs of their lattice points. 

Figure 3.  The three regular lattices are the RNGs of their lattice points. 

On the theoretical side, there remain some open problems 
concerning tight upper and lower bounds on the number of 
edges in the RNG of n points. In the two dimensional 
Euclidean space (d=2) the well-known upper and lower 
bounds that follow from the theory of planar graphs are, 
respectively, 3n-6 and n-1. For d ≥ 4 the number of edges in 
the RNG is Ω(n

2
) [37]. The intriguing case is for three 

dimensions, where obtaining sharp bounds remains a 
challenging open  problem. 

Recall that Chang, Tan, and Lee established in [22] that 
20-RNGs admit a Hamiltonian cycle. It remains an open 
problem to determine whether the number 20 may be reduced. 
It is also shown in [22] that the k-RNG has Okn) edges, which 
leads to an algorithm for computing the k-RNG in O(kn

2
) time. 

It is not known if this algorithm is optimal. 

Berger [14] applied the minimum spanning tree to design 
data structures and algorithms for the automatic generation of 
adaptive subgrids in the numerical computation of partial 
differential equations. It remains to be determined if applying 
RNG’s instead, would yield better results. 

The measures of distance used in most of the applications 
reviewed here consist predominantly of Minknowski metrics 
(Lp norms). However, the fundamental idea behind the RNG 
may be generalized to other metrics, non-metrics, and more 
general dissimilarity measures, such as the number of links 
between nodes in a graph, or the degree of separation between 
people in a variety of types of social networks. The RNG has 
not yet been explored in this domain. The success enjoyed by 
the RNG in other areas, suggests that extracting the RNG from 
social networks may provide useful information concerning 
phenomena such as the propagation of ideas, products, or 
diseases.  

A general pattern concerning open problems and future 
research that emerges in most of the applications outlined here 
is that the RNG serves well as a preliminary step that has some 
limitations ascribed to the fact it is based exclusively on 
spatial information. In most applications, what is needed to 
make the RNG even more powerful, in addition to this purely 
geometric information, is the incorporation of complementary 
application-specific higher level knowledge. On this front 
there is still plenty of work to be done. 
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