

147

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

On Modeling and Testing Components of the

European Train Control System
César Andrés, Ana Cavalli, Nina Yevtushenko, João Santos, and Rui Abreu

Abstract—This paper studies the abilities of the formal model

of a Timed Extended Finite State Machine (TEFSM) to represent

the safety properties of the European Train Control

System (ETCS). The model is based on Finite State Machines

augmented with continuous variables and time information,

which allows representing the basic functioning of the units in

this real-time system. In order to represent temporal

requirements, timeouts are used for modeling some aspects of the

(internal) critical behavior of the train control system. The model

abilities to represent safety properties are evaluated using

different testing scenarios for model implementations in IF, XML

and JAVA languages. Tests are automatically generated using the

tool TestGen-IF where corresponding safety properties are

specified as test objectives. Based on the obtained experimental

results the advantages and disadvantages of a developed model

are briefly discussed.

Keywords—European Train Control System, formal model,

Timed Extended FSM, active testing, safety properties.

I. Introduction
European railways have been evolving over the last

150 years within national boundaries, resulting in a variety of
different train control systems. To increase the
interoperability, the European Union has decided to
standardize the European Control Train System, in short
ETCS. The standardization has been addressed by developing
a system specification which will become mandatory within
the European Union in 2015. Several research initiatives
attempt to develop frameworks for providing interoperability
between the different European train systems [1-5].

The ETCS requirements specification [6] describes the
system behavior as well as a number of functional
requirements.

César Andrés, Ana Cavalli , João Santos

Telecom SudParis - CNRS SAMOVAR

France

Nina Yevtushenko

Tomsk State University
Russia

Rui Abreu

University of Porto

Portugal

As the significance and complexity of these requirements
grow rapidly, formal techniques for producing reliable control
software become of utmost importance. Such formal methods
and model-based testing are amongst the most promising
approaches for increasing software confidence
(see, e.g., [7-9]). However, since the functional requirements
of the specification of the ETCS

1
 are written as plain text,

there is a strong need to map these requirements into a formal
representation. To formally describe these requirements, one
needs a formalism that takes into account different behavior
scenarios under different conditions, continuous variables that
are related to the train position, speed and acceleration and
also different roles of different actors in the specifications:
the Radio Block Center (RBC), the train (TRAIN), and
the environment itself. The devised formal model ought to
have abilities to represent critical situations such as: a) alarm
signals from the RBC; b) external inputs to RBC and trains;
c) critical distance (between two trains or with respect to other
obstacles); d) the loss of some messages from/to a train or
from/to the RBC. In this paper, we propose to use finite state
machines augmented with continuous variables and (time)
guards to represent the most important requirements of the
ETCS and study the abilities of such model for verifying
functional and safety properties.

Last years, the use of formal methods for software testing
became a reality [see, for example, 10-12], and in the context
of this work, active testing scenarios are generated from the
model itself; the latter allows to achieve a high degree of
automation and certainty. These testing scenarios compile
relevant safety properties of the system. To support the
theoretical framework a developed model has been
implemented in different languages such as XML, JAVA and
IF. The TestGen IF tool [12, 13] is utilized to codify the
specification and to automatically obtain a set of tests using
the Hit-or-Jump Algorithm [13]. The model is first verified by
producing an expected output to each test case according to
the plain description [6] and then we evaluate the
expressiveness of derived tests using mutation testing of a
JAVA implementation. The obtained experimental results
allow to evaluate the advantages of using a proposed model as
well as to identify its limitations.

To summarize, in this paper, we provide a formal model
for the requirements of the European Train Control System
using Finite State Machines augmented with continuous
variables and time constraints. The model is a close
representation of the units specification provided by the

1 The open ETCS project, funded by the ITEA2 program, aims to develop an

integrated modeling, development, validation and testing framework for

leveraging the cost-efficient and reliable implementation of ETCS. For further

information, visit the project website at
http://www.itea2.org/project/index/view/?project=10135

148

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

standard. Testing scenarios are automatically generated using
the TestGen IF tool. The fault coverage of generated testing
scenarios has been evaluated using model implementations in
different languages, namely, XML, JAVA and IF and
according to the obtained experimental results, the proposed
formal model has good abilities for generating high quality
tests for detecting faults which threaten the system safety.

The rest of the paper is organized as follows. Section II
introduces the basic concepts used for the modeling and
testing techniques and presents the formal model. Section III
presents a framework for deriving testing scenarios for
verifying safety properties of components of the ETCS
system. Section IV concludes the paper; in this section, the
advantages and disadvantages of a developed model are
briefly discussed. We also mention that the preliminary
version of this paper has been published as a technical report
of Telecom SudParis [14].

II. ETCS Model
In this section, we introduce the basic concepts of the

formal model and discuss the decisions we take when building

the model and detail the proposed model.

A. TEFSM model
A TEFSM is an ordinary finite state machine (FSM)

augmented with context variables, input/output parameters,
predicates and update functions. Given input and output
alphabets I and O, we denote by R the set of all input
parameters and by Q the set of all output parameters. The
finite set of context variables is denoted by V.

A Timed Extended Finite State Machine, in short TEFSM,

is a tuple E = S, s0, I, O, T, , v0 where S is a non-empty
finite set of states with the initial state s0; I and O are input and
output alphabets; T is the set of transitions;

: S S (N), N = 1, 2, … , is a timeout function.

Given the current state s of the TEFSM E, if no input is

applied before the timeout (s)N expires, then the TEFSM can

spontaneously move to another state (s)S as specified by the

timeout function. The special case (s) = (s,) means that the
TEFSM could stay in state s until an input is applied.

A transition is a tuple (s, i, o, Pr, fcontext, foutput, s) where

s, s S are the initial and final states of the transition; i I

and o O are input and output actions respectively;

Pr: R V {0, 1} is a predicate over the input parameters

and context variables; fcontext: R V V is the update function

for the context variables; and foutput: R V Q is the update
function for the output parameters.

B. Modeling Decisions
There are many models related to ETCS [see, e.g., 1-5].

Most models describe the system behavior using logic
formulas and then verify whether these formulas satisfy some
safety requirements, such as different notions of the safe
distance, alarm messages (fire, accidents, etc.) which can
come from outside the train and the RBC as well as from

inside the train. As a complementary approach for such
verification, testing is commonly used. If the corresponding
formula respects the checked safety requirements and an IUT
produces only expected outputs to applied test cases then, to
some extent, there is a confidence that the model and
implementation are safe. In order to develop a formal model in
the ETCS context it is necessary to consider the system
components and discuss the behavioral aspects of an RBC and
a train under control and which safety aspects should be taken
into account. In this paper, we consider that there are three
components, a train under control, the RBC and the
environment.

A big portion of safety issues is related for situations when
a train under control moves autonomously: when the train
should negotiate with the RBC about the safety distance, when
the train should be stopped, i.e., we have to check the
functional aspects of the system. Some core points can be
defined where a component has different behaviors, and those
points can be considered as states in the model. The conditions
when a component moves from one state to another are
usually related to different kinds of safety distances,
respecting alarm messages, etc. Moreover, transitions
significantly depend on the values of continuous variables
such as train position, speed, acceleration, etc.

Figure 1. States of the train and RBC models.

For evaluating whether the above safety issues can be
solved using the formalism of finite transition systems we
consider a simplified TEFSM model. According to our model,
there are three components: a train under control, the RBC that
also knows the position, speed, acceleration of the previous
train, and the environment.

A train under control has four special positions where it
has different behavior (Figure 1). The initial state is where the
train gets a notification message informing that it is controlled
by the given RBC. When getting this message the train reports
the corresponding data to the RBC (for example, from the last
linked balise group) and moves to another state
(moving/stopping). At this state, the train can get different
messages from the RBC but almost any message should
contain the safety distance according to the position of the
previous train or possibly, according to some other obstacles.
If the train is in a safe position it continues autonomous
moving. However, if its position is closer to some dangerous
point then the train should come to another state and start the
negotiation with the RBC. If the train crosses the dangerous
point then the train should be immediately stopped. The safety

149

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

point can be calculated by the RBC based on the data got from
the previous train or on some data got from the environment,
etc. The train waits for an input from the RBC in order to start
moving again.

In our model, we have such a component as the
environment and as far as we know, the idea of modeling the
ETCS environment never has been presented. The
environment can send alarm messages to the RBC if
something happens outside. We also model the train “red
button” (accident, fire etc. inside the train) by the environment
and in this case, the train has to immediately report the
situation to the RBC.

The RBC states are almost the same as for the train but the
RBC can get/send messages to/from the environment that
usually is some automatic control (another RBC) or some
manager in charge. Moreover, based on the collected
information (from other RBC, from trains this RBC is in
charge of, etc.) the RBC calculates the safety position for a
given train and reports this position to the train. The RBC also
checks whether the train respects the RBC instructions. For
example, if the train under control sends several consecutive
messages where the recommended speed is exceeded more
than it is allowed, for the safety reasons, the RBC has to stop
the train.

Tests verifying the safety aspects should check the
transitions in the model, i.e., it should be checked whether the
logic expressions for firing a transition are correctly
implemented, whether the implementation respects timeouts
which model the message loss, etc. Here we notice that there
are methods for deriving test cases from a TEFSM [15, 16]
which can verify the above aspects, i.e., tests for verifying
safety issues of an IUT can be automatically derived based on
our model. Moreover, actually, it is known that only FSM
models where each input is followed by a corresponding
output allow automatic deriving finite tests with the
guaranteed fault coverage where the races between inputs and
outputs can be easily avoided. Many authors for deriving finite
tests with the guaranteed fault coverage turn their models to
some kind of an FSM (see, e.g., [17]). Below we describe the
train and the RBC TEFSMs in more details.

C. Modeling requirements
In this subsection, some requirements of the ETCS Level 3

are presented. At this level, the trains follow the moving block
principle [6], i.e., the current speed and acceleration of a train
are dynamically determined by a RBC tracking the train.
Trains are only allowed to move when the RBC grants them
the permission.

According to the set of requirements, for each train, there
is the safety distance d. In our simplified model, the critical
point of Trainj of interest is calculated by the RBC that
controls the Trainj in order to avoid collisions. Figure 1 shows
the states which are used in the representations of a train under
control and an RBC that controls this train.

If Trainj is controlled by the RBC, then the train reports its
current position (p), speed (v), and acceleration (a) and the

current internal state; the output parameters p, v, a are updated
according to the information about the train.

The RBC analyzes the available information, in particular,
obtained from the previous train, and returns the critical
distance d to the train. According to the rules, we describe the
safety distance requirements that are used in the model. For
the sake of simplicity, in our model, the input parameter SD
represents the safety distance and is a constant in the model.
We say that a train at position p and with the critical point d is:
a) in a safe position if

(d – p) > 4SD; b) in a negotiation position if 2SD ≤ (d – p)

≤ 4SD; c) in a stop position if (d – p) < 2SD. If the train is at
the Moving state and it is in a safe position then the train can
remain at this state having the speed and acceleration under
limits recommended by the RBC that controls the train.
However, if the train progresses and the critical distance is not
increased with the same speed, then the train enters the
Negotiation state. Finally, if the train is at the Negotiation state
and the critical distance does not increase then the train enters
the Stop state.

The model presented in this paper also satisfies the
following requirement: “Messages between the train and the
RBC may be lost. However, the train continues moving and it
should automatically decide if it is in a safe position or not”.
In order to model this situation, our model is augmented with
the timeouts TAB and TBC.

D. Formal Model
1) The train. A TEFSM that describes the behavior of the

train has the following states. State Start is the initial state of
the train. Any train at this state is not controlled by the RBC of
our interest. Once the train is controlled it moves to the
Moving state. The RBC checks the position of the train and if
the train crosses the Negotiation point then the train and the
RBC start negotiating and the train moves to the Negotiation
state.

If the train reaches the Stop position then the train should
be stopped, i.e., the train moves to the Stop state. The train can
come to this state if timeouts are triggered or the current
position of the train is very close to the critical point, or the
train has received an alarm message from inside the train
(modeled as a part of the environment) or a stopRBC message
from the RBC.

There is a timeout TAB (the dot line) from the state
Moving to the Negotiation state. If the train is in the Moving
state and the train does not receive any input during TAB time
units, then the train automatically moves to the Negotiation
state. There also is a timeout TBC from the Negotiation state
to the Stop state. If the train is in the Negotiation state and the
train does not receive any input during TBC time units, then
the train automatically moves to the Stop state.

2) The RBC: At the initial state Idle, the RBC collects the
information of all the trains which are controlled by this RBC
and is waiting for the message take_care to control a train of
interest. When the message take_care is confirmed by the train
then the RBC moves to the Info state. The Info is the state
where the RBC waits for a message from the train that

150

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

contains its position, speed and acceleration and its current
internal state.

The RBC sends the message control(k) to the train in the
Idle state and when k = j the train Trainj is controlled by the
RBC. Once getting the message control(j) at the Start state the
train replies with the message rep(p, v, a, state) to the RBC. In
fact, once controlled by RBC the train replies with this
message to any input from the RBC. The message move(d,
vmax) sent to the train contains the critical point d and the
maximum speed vmax that the train can have.

Depending on the position of the previous train or for some
other reasons, the critical point d is calculated and according
to its value the RBC moves to the Stop state, to the Negotiation
state, or to the Move state. The Stop is a state where the RBC
finds out that the train is stopped. The Negotiation is a state
that denotes an active exchange of messages between the train
and the RBC, since the train is not in a safe position but did
not reach a stop position yet, i.e., the train is in a negotiation
position. The Move state denotes that the train is
autonomously moving. The train can be stopped when the
position of the train is close to the point d (the train is in a Stop
position) or if any external input alarm occurs. In order to stop
the train, the RBC sends the message stopRBC. If the train
receives this message at any state then the train moves to the
Stop state. The message neg(d, vmax) is sent to the train when
the RBC knows that the train is at the Negotiation state. The
environment can send the alarm message to the RBC
indicating that something is going wrong outside. Finally, if
the RBC gets this message then the RBC sends the message
stopRBC in order to stop the train and enters the Stop state.

III. Test derivation
In this paper, we assume that the RBC and the train are

tested separately, i.e., when testing a train implementation the
RBC is replaced by a tester that sends inputs to the train and
checks whether the produced outputs are expected.

A. Test derivation by TestGen-IF tool
A set of tests which check appropriate safety properties

was automatically derived using the train description in the IF
language where basic safety requirements can be described as
appropriate test purposes (test objectives). Based on these test
objectives, the toolset TestGen-IF [11, 12] automatically
generates a set of tests based on the Hit-or-Jump test
generation algorithm [13]. After defining a test objective, the
tool provides a test suite associated with a corresponding
scenario. In our case, we have generated tests for 20 test
objectives. Each test has been checked for meeting the system
requirements specification [6]. The fault coverage and the
expressiveness of the generated test suite has been evaluated
using other representations of the train model, namely, XML
and JAVA representations.

In order to be confident that the set of test objectives
considered for test generation has a good coverage over
necessary safety properties of the train system, we evaluate the
quality of IF tests with respect to safety properties of the train
system. For this purpose, an XML train simulator has been

implemented. At the next step, XML mutants of different
types which threaten safety issues of the train system, were
created from which a corresponding JAVA code was
automatically generated. The fault coverage of tests generated
by the TesGen-IF tool was evaluated over generated JAVA
mutants.

To verify if the test suite with 20 test cases generated by
the TestGen-IF tool can detect faults which threaten the
system safety, we ran the above test suite against JAVA
implementations generated from different XML mutants
which have corresponding injected faults that violate the
safety properties of the train system. We inserted faults of the
following types: i) incorrectly implemented a destination state
of a transition; ii) the implementation does not correctly
identify the received inputs; iii) an output of a transition is
wrong; iv) the conditions under which a transition can be fired
are wrong; v) update function for internal variables and/or
output parameters are wrongly implemented; vi) an
implementation does not respect the specification time
constraints. All types of faults have been successfully detected
by multiple test cases and each test case was able to detect
faults of different types. In other words, a derived test suite
has a good quality, since it detects different types of faults that
affect the safety issues. We also notice that the studied test
suite does not have considerable redundancy, since different
faults are detected by different test cases.

It should be noticed that there are other test generation
tools [see, for example, 18] which can also be used for the
considered model; nevertheless, we used the TestGen-IF tool,
since IF has a model checker that can be later used for the
model verification.

IV. Concluding remarks
This paper proposes a formal model that is a finite state

machine augmented with continuous variables and time
constraints (TEFSM) to represent requirements of the
European Train Control System. The abilities of the model for
representing safety properties and for deriving tests for
checking these properties have been evaluated. Tests are
automatically derived using the IF representation of the
proposed model and the toolset TestGen-IF. Based on
performed experiments the conclusion can be drawn that the
TEFSM formalism is adequate for modeling and testing safety
ECTS properties. Nevertheless, the experiments also
eliminated some limitations of the considered model. First,
output timeouts which represent a transition duration have to
be taken into account. Secondly, more complex update
formulae should be considered and some model states have to
be composite, i.e., the model has to be hierarchical. As
a result, it seems to be better to use UML-based languages
when describing the behavior of ETCS units at higher levels.

References

[1] M. Hörste and E. Schnieder, “Modelling and simulation of train control

systems using petri nets,” World Congress on Formal Methods in the
Development of Computing Systems, FM’99, vol. 3. 1999, pp. 1-16.

151

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

[2] J. Padberg, L. Jansen, H. Ehrig, E. Schnieder, and R. Heckel,
“Cooperability in train control systems: Specification of scenarios using
open nets,” J. Integr. Des. Process Sci., vol. 5, no. 1, pp. 3–21, Jan. 2001.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1241714.
1241716 =0pt

[3] A. Zimmermann and G. Hommel, “Towards modeling and evaluation of
etcs real-time communication and operation,” J. Syst. Softw., vol. 77,
no. 1, pp. 47–54, Jul. 2005.

[4] G. Bundell, “Aspects of the safety analysis of an on-board automatic
train operation supervisor,” in IEEE Int. Conference on Systems, Man
and Cybernetics, 2009. SMC’09. IEEE, 2009, pp. 3223–3230.

[5] A. Platzer and J. Quesel, “European train control system: A case study in
formal verification,” in 11th Int. Conference on Formal Engineering
Methods: Formal Methods and Software Engineering, ICFEM ’09.
Springer, 2009, pp. 246–265.

[6] European Research Agency, “ERTMS/ETCS, functional requirements
specification,” European Union, http://www.era.europa.eu/Document-
Register/Pages/ERA-ERTMS-03204.aspx, Brussels, Belgium, 2007.

[7] J. Faber, “Verification architectures: Compositional reasoning for real-
time systems,” in 8th Int. conf. on Integrated formal methods, IFM’10.
Springer, 2010, pp. 136–151.

[8] A. Post, J. Hoenicke, and A. Podelski, “rt-inconsistency: a new property
for real-time requirements,” in Fundamental Approaches to Software
Engineering. Springer, 2011, pp. 34–49.

[9] A. Post and J. Hoenicke, “Formalization and analysis of real-time
requirements: a feasibility study at bosch,” in Verified Software:
Theories, Tools, Experiments. Springer, 2012, pp. 225–240.

[10] J. Peleska, “Industrial-strength model-based testing - state of the art and
current challenges,” in 8th Workshop on Model-Based Testing,
MBT’13, 2013, pp. 3–28.

[11] A. Cavalli, E. M. D. Oca, W. Mallouli, and M. Lallali, “Two
complementary tools for the formal testing of distributed systems with
time constraints,” in 16. 12-th IEEE/ACM International Symposium on
Distributed Simulation and Real Time, DS-RT’08. IEEE Press, 2008,
pp. 315–318.

[12] I. Hwang, A. Cavalli, M. Lallali, and D. Verchere, “Applying formal
methods to PCEP: an industrial case study from modeling to test
generation,” Software Testing, Verification and Reliability, vol. 22,
no. 5, pp. 343–361, 2012.

[13] A. Cavalli, D. Lee, C. Rinderknecht, and F. ZaÃ¯di, “Hit-or-Jump: An
algorithm for embedded testing with applications to in services,” in
Formal Methods for Protocol Engineering and Distributed Systems, ser.
IFIP Advances in Information and Communication Technology.
Springer, 1999, vol. 28, pp. 41–56.

[14] C. Andres, A.R. Cavalli, N. Yevtushenko. On modelling and testing the
european train syste. Tech. report TechRca 14-03-2013. Telecom
SudParis, 2013.

[15] M. Zhigulin, N. Yevtushenko, S. Maag, and A. Cavalli, “FSM-based test
derivation strategies for systems with time-outs,” in 11th Int. Conf. on
Quality Software, QSIC’11, 2011, pp. 141–149.

[16] M. G. Merayo, M. Núñez, and I. Rodrguez, “Formal testing from timed
finite state machines,” Computer Networks, vol. 52, no. 2, pp. 432–460,
2008.

[17] J. Springintveld, F. Vaandrager, and P. R. D’Argenio, “Testing timed
automata,” Theoretical computer science, vol. 254, no. 1, pp. 225–257,
2001.

[18] A. Belinfante, “JTorX: A tool for on-line model-driven test derivation
and execution,” in 16th Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’10, LNCS 6015.
Springer, 2010, pp. 266–270. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12002-2_21

About Author (s):

César Andrés has received his Ph.D.

degree from the Madrid University. IN

2012-2013 he was a postdoc at Télécom

SudParis in France with his research

focusing on the active and passive testing

of communicating systems.

João Santos is a second year PhD student

in Télécom SudParis in France with his

research focusing on the diagnosis of time

constrainted systems. He completed his

master thesis in the Faculty of Engineering

of the University of Porto in 2007.

Rui Maranhão (publishes as Rui Abreu)

graduated in Systems and Computer

received his Ph.D. degree from the Delft

University of Technology, the

Netherlands, in November 2009, and he is

currently an assistant professor at

the Faculty of Engineering of University

of Porto. He is also with the School of

Computer Science of Carnegie Mellon

University (CMU), USA, as a Visiting

Faculty Member.

Ana Rosa Cavalli is Full Professor at

TELECOM SudParis since 1990, and

nowadays she is the director of the

Software for Networks department. Her

research interests are on formal modeling,

testing methodologies for conformance

and interoperability testing, active testing

and monitoring techniques, validation of

security properties and their application to

services and protocols

Nina joined Tomsk State University шт

1991 as a professor and presently she

leads a research team working on the

synthesis and analysis of discrete event

systems. Her research interests include

formal methods, automata theory,

distributed systems, protocol and software

testing.

