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Analysis of the effect of hematocrit on blood flow in a 

model of coronary artery stenosis 
 L. Achab, S. Benhadid 

 
Abstract—In this paper, the effect of hematocrit on increasing 

viscosity and consequently on related changes in blood flow 

patterns in coronary artery with stenosis is evaluated. A 

numerical procedure using the Galerkin finite element method is 

developed to simulate the pulsatile blood flow under physiological 

conditions. The non-Newtonian shear-thinning character of blood 

is modelled by inhibiting the generalized power-law, as a 

constitutive equation, in the governing equations of motions to be 

solved. Results from simulations indicate that hematocrit has 

considerable effects on instantaneous flow patterns and wall 

shear stress. Comparing flow patterns for different level of 

hematocrit shows marked differences between them especially at 

deceleration phases. 

Keywords—blood flow, hematocrit, finite element, coronary 

artery. 

I.  Introduction  
Blood is a complex suspension of formed elements suspended 

in an aqueous polymeric and ionic solution of low viscosity, 

the plasma, containing electrolytes, organic molecules and 

other proteins. It consists principally of red blood cells 

(erythrocytes) which constituted about 97 percent of the total 

particule volume, the white cells (leukocytes) and platelets 

occupy the remaining 3 percent volume. Because of their high 

concentration, the red blood cells exert a strong influence on 

the flow properties of blood. Hematocrit (He), defined as the 

proportion by volume of the blood that consists of red blood 

cells, is the most important determinant of whole blood 

viscosity. For normal human blood, the hematocrit is between 

40-50 percent [1], and it should be emphasized that blood flow 

is non-Newtonian at all rates of shear for hematocrits above 

about 10% [2]. This behavior arises primarily from an increase 

in rouleaux density, length, and cell-cell interaction with 

increasing RBC concentration [3], particular, in some diseased 

conditions, and at low shear rates, as in  the pulsatile flow 

case, in which blood is subjected to cyclic low velocities for a 

major part of the time period [4,5].  
 

L. Achab 

Theoretical and Applied Fluid Mechanics Laboratory, Sciences and 

Technology University, USTHB. 

Algeria. 
 

S. Benhadid 

Theoretical and Applied Fluid Mechanics Laboratory, Sciences and 

Technology University, USTHB. 

Algeria. 

 

Increasing blood viscosity by increasing hematocrit is one 

factor in hypertension and atherosclerosis. It is considered to 

be potentially pathological as shown by the study of Tohgi et 

al. [6] who report that the risk of cerebral infraction increases 

remarkably when hematocrit values exceed 45%. Salazar-

Vazquez et al. [7], for their part, investigated the effect of 

hematocrit on blood pressure in diabetic patients, and stated 

that high hematocrit values can be associated with 

hypertension.  

Furthermore, the shear-thinning character is the dominant non-

Newtonian property of the blood [8], meaning its viscosity 

decreases as the shear rate increases, as a consequence of 

rouleaux dispersion at low shear rate. Extensive experimental 

and numerical approaches for flow through stenosis have been 

carried out, treating blood as a non-Newtonian fluid; Tu and 

al. [9] considered the blood obeying Hershell-Bulkley, 

Bingham and Power law fluid models to simulate the blood 

flow through arterial stenosis. The models predictions were 

compared to those obtained with the Newtonian fluid law for 

both steady and pulsatile flow. They acclaimed that the 

disturbances are stronger by their vorticity intensity and persist 

after the geometrical obstacle. Buchanan and al. [10] 

employed the Quemada and power-law models in pulsatile 

laminar flow through an axisymmetric stenosed tube; they 

reported that different flow patterns formed for the highest 

Womersley number under consideration, and found that the 

rheological models could affect wall shear stress quantities. 

More recently, M.R. Modarres Razavi and al. [11] compared 

for the same rheological models with Newtonian one, the 

hemodynamic wall parameters in pulsatile nature of blood 

flow. They examine in particular the effect of the frequency of 

pulsation on the flow field and location of the vortex formation 

distal to the stenosis for various Womersley numbers. These 

studies have all indicated the significant role of non-

Newtonian behavior of blood in flow characteristic through 

stenotic artery. One of the successful models which has been 

able to capture the shear-thinning behavior of blood over a 

wide range of shear rates is the model proposed by Ballyk et 

al. [12] a generalization of the power law model. The purpose 

of this study is to investigate the effects of hematocrit on 

several hemodynamic factors, such as velocity, wall shear 

stress and pressure in a stenosed coronary artery. This analysis 

was conducted using the finite element method, the two 

dimensional Navier-Stocks equations coupled with the non-

Newtonian constitutive model are solved by a finite element 

method, to investigate the influence of non-Newtonian 

behavior and hematocrit on the qualitative behavior of blood 

flow. The blood is assumed to be shear thinning and is 

modelled using a generalized power-law model with 

hematocrit values varying from 20% to 80%. 
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II. Numerical modelling 

A. Mathematical model  
In this work, blood is modeled as an incompressible non-

Newtonian fluid. The governing equations, corresponding to 

the conservation of mass and linear momentum, can be written 

in velocity-pressure form as follows: 

Continuity equation 
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Momentum equation 
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Where   is the blood density; p and v denote the pressure and 

velocity of blood respectively,   is the dynamical viscosity. 

The correct specification of the viscosity model is crucial 

to capture the correct rheological behavior of blood. In this 

study, the generalised power law is adopted. Our choice of this 

constitutive equation was dictated by the physical 

considerations of capturing the viscosity variation in lower 

shear rates. It is more accurate than the Bingham and Casson 

models in regions of separated flow. This model is a developed 

form of the known Power law and encapsulates the behaviors 

of many of the other blood models. Specifically, it behaves 

Newtonian at high strain rates and has Casson and Carreau 

models as special cases. For the Generalised Power law the 

shear stress is given by the expression: 
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Here, λ and n are the consistency coefficient and power-law 

index for the shear-thinning fluid and are assumed to be 

functions of the local strain rate  ,  is the limiting 

Newtonian viscosity, a, b, c, d, , n, and n are the 

generalized power-law model parameters. We obtain these 

unknown parameters by curve-fitting to experimental data [13, 

14 ] using a non-linear least-squares method.  

Figure 1 illustrates the comparison between theoretical 

(solid lies), and experimental data (symbols) for range of 

hematocrit from 20% to 80% and revealed the good ability of 

this model to fit a shear rate dependence of the blood viscosity 

[15]. 
 

 

Figure 1.   Fitting of the blood viscosity by the generalised power law model 

for various hematocrit values  

 

B. Physical model  
For the sake of simplicity, it is assumed that the geometry 

of the stenosis artery is axisymmetric and the vascular wall is 

considered as a rigid tube. Geometry of the artery in the 

presence of stenosis is constructed mathematically of which 

the shape is described by the cosine model suggested by 

Young [16]: 
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Here L is the width of stenosis,  the maximum width and 

0R being the unconstructed radius of the stenosed vessel, z0 is 

the center position of stenosis region. This work is concerned 

with the right stenosed coronary artery. The 75% stenosed 

artery is modeled as a straight tube, with dimensions of, 

75.0 , L=2, z0=16, (Fig. 2). 
 

Figure 2.   Flow geometry of blood vessels 
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C. Boundary conditions 
The blood flow in the coronary arteries is very pulsatile 

with zero or even reversing (negative) flow in systole. The 

boundary conditions required to solve the governing equations 

are as follows. 

-  The pulsatile flow was generated by means of axial 

velocity inlet profile imposed as function of the time (figure 

3): 

 -  The radial velocity is set to zero at the inlet. 

    - At the outlet of the artery, the fully developed flow 

condition is applied; we arbitrarily prescribed a zero pressure.  

    -   On all rigid walls, all velocity components were set to 

zero according to the no-slip condition.  

    -  In the plane of symmetry, both the normal velocity and 

the first-order derivative of the axial velocity in the radial 

direction are set to be zero. 

 

Figure 3.  The inlet velocity waveform of blood vessel. 

 

D. Numerical method 
 

The momentum and continuity equations are solved 

numerically by a finite element method [17, 18]. For the 

continuity equation, the penalty function approach is 

introduced to eliminate the pressure from the constraint 

condition, to reduce the degrees of freedom for each node and 

to save computational coasts. The discretization of these 

equations follows the standard Galerkin’s finite element 

formalism. This discretization leads to the following non-

linear partial differential equations, written for each element in 

a matrix form as: 

 

 

 

 

 

Where:  M is the mass matrix  N  is the convective 

matrix,  P  is the penalty matrix,  S is the diffusion matrix, 

 v  the time derivative of velocity,  v velocity vectors,  f is 

the boundary forces,   is the penalty parameter.  

The non-linear terms in equation (6), resulting from the 

advection in the inertial term and the non-Newtonian viscosity 

behaviour in the constitutive relationship, need to be solved at 

each time step over a cardiac pulsation. Consequently, a direct 

iterative technique, in which an initial value is assumed for 

velocity vector  v  is used. The time integration is performed 

by an implicit first-order time step scheme. The time step is 

chosen small enough that the stability conditions on the 

convective and diffusive terms are preserved. 

The computational domain extends from z=0 to z=46, in order 

to have a sufficient development length in the axial direction. 

Motion equations are integrated in time for several periods 

until a periodic solution is reached, in the periodic steady state 

of period T, the solutions at instants t and t + T had to be 

equal. Typically, transient calculations over five cycles were 

sufficient to satisfy this condition (error within 10
-5

). 

Moreover, the importance of non-Newtonian properties of 

blood on the blood flow in artery is studied by changing the 

level of hematocrit from 20% to 80 %.  

  

III. Results and discussion 
 

Numerical results concerning the flow characteristics are 

presented for axial velocity, wall shear stress and pressure. In 

figure 4, the time variation of axial velocity on a given point 

on the tube centerline is displayed for different level of the 

hematocrit for non-Newtonian models. The difference in the 

velocity profile is pronounced at the systolic phase for time 

between 0.2s and 0.4s with the high velocities associated with 

flow acceleration, and the difference diminishes with the low 

velocities at diastolic phase. From this figure we observe that 

an increase in hematocrit decreases the axial velocity. 

 

Figure 4.   Variation of axial velocity in a time cycle for different rate of 
hematocrit 
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Figure 5.   Axial velocity profiles on symmetric axis for different rate of 

hematocrit 
 

We represent in figure 5 a comparison of the axial velocity 

profiles along the symmetric axis, for the six levels of 

hematocrit in the same flow condition as previous. The 

maximum velocity in a cycle occurs at the throat of stenosis. 

As the fluid moves further downstream, the velocity profile 

becomes stabilized, i.e. fully developed flow. This figure 

clearly shows that the difference in axial velocity profiles is 

pronounced at and downstream the stenosis. Peak velocities 

are increased with increasing hematocrit at the constriction, 

while velocities are reduced with the hematocrit far from the 

constriction. 
Figure 6 illustrates the pressure distributions at the 

centerline of the artery. Note that zero pressure at the outlet of 

the artery is specified because the pressure is determined only 

up to a constant in the model. In all cases a, pressure drop 

caused by the stenosisis observed. The pressure reaches a 

slight local minimum at the throat and then recovers 

downstream from there. It is also observed that hematocrit 

level influences the pressure. The increase of hematocrit 

increases the pressure drop along the artery. 

 

Figure 6.    Pressure variation along the symmetric axis for different rate of 
hematocrit 

 

Figure 7.   Variation of shear stress along the wall for different rate of 
hematocrit 

 

Wall shear stresses as a function of axial distance are 

presented in Figure 7 for 20–80% hemarocrit rates, only at the 

constriction area. It is well known that at this location the WSS 

values are the highest because of the jet effect due to the 

constriction. Downstream from the point of the maximum the 

wall shear stress decreases rapidly. As indicated the peak wall 

shear stress decreased with the hematocrit which explains the 

increase in the degree of blood deceleration with hematocrit in 

the wall vicinity. 

 

IV. Conclusion 
 

The pulsatile flow of blood in stenosis artery is simulated by 

finite element method. It was concluded that using a non-

Newtonian model for blood viscosity was important over the 

whole cardiac cycle. And this modifies the flow structure, even 

beyond the contracted region. The analysis of obtained 

calculation results suggest that the hematocrit may be an 

important factor to predict the main characteristics of the 
physiological flows and may have some interest in biomedical 

applications. 
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