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Abstract—Structural damage assessment of framed structure 

utilizing a sensitivity based parameter identification method is 

presented in this paper. A subset of applied static forces and subset 

of measured strains are used to identify the elemental stiffness 

parameters of all or a portion of a finite element model of the 

structure. Here we developed a method for parameter estimation of 

linear elastic structures using static strain measurements, preserving 

structural connectivity and determines the changes in cross-sectional 

properties, including large changes or elemental failure for stable 

structures. To linearize the associated non linear problem a first 

order Taylor series expansion is used as an iterative scheme. The 

algorithm automatically adjusts the structural element stiffness 

parameters in order to improve the comparison between a measured 

and theoretical response in an optimal way. In this study we have 

artificially generated the required measured input. The identified 

cross-sectional element properties can be used for damage 

assessment of any structure. This procedure also identifies the 

selection of limited number of degrees of freedom required to 

perform successful parameter identification, as well as reduces the 

impact of measurement errors of the identified parameters. Two 

numerical examples, including two-dimensional (2D) and three-

dimensional (3D) frame structures are presented and the element 

stiffness are successfully and accurately evaluated, and to analyze 

any frame structure with this numeric process easily, a program is 

implemented in MATLAB programming according to the explained 

process, so that we can easily change the input data for analyzing 

different types of frame structures. 

Keywords—Finite element model; Static strain Measurement; 

Damage detection;Error elimination; 

Introduction 
In recent years data-driven structural health monitoring 

(SHM) has been actively investigated by the civil engineering 

community as an important tool for future infrastructure 

maintenance. To properly manage civil infrastructure, its 

condition, or serviceability must be assessed. Measurements 

and proper data processing are expected to give a reasonable 

assessment of serviceability that can be improved based on 

the assessment. A static condensation method is proposed to 

adjust the parameters of the finite element model (FEM), by 

minimizing the difference between the analytical data and the 

nondestructive test (NDT) data. The parameter 

adjustmentsbased on trial and error is not appropriate for 

structures with large number of parameter values. To  
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overcome this type of difficulties parameter estimation 

process is used, in which the major differences between 

estimated and expected parameters are classified as damage. 

In all cases, damage can severely affect the safety and 

serviceability of the structure. Hence an early detection of 

any damage is necessary. Owing to its practical importance, 

damage identification in structures, especially the monitoring 

of structural health has been the subject of extensive 

investigations over the last two decades. As a result, a great 

deal of research work on using either the static or the 

dynamic response of structures for damage detection has been 

carried out. 

Displacement measurements from applied loads are used for 

static finite element method. It can be a difficult task to make 

displacement measurement on full-scale structure; for this a 

frame of reference must be established. There is having a 

number of non-destructive tests to assess the material 

strengths of the structure without damaging the structure. 

However, all these techniques normally assess the damage 

qualitatively. System identification techniques, based on 

dynamic data, have been developed extensively, compared to 

static data. But, the static responses are more locally sensitive 

than the frequency in structural damage detection.  

The model-based approach is implemented by using 

computer model of the structure of interest, such as Finite-

Element Method (FEM), to identify structural parameters 

based on the measured test data. Though non-contact 

displacement processes are available, but, they are costly and 

difficult. Use of strain gauges to measure the static strain can 

overcome those limitations, but some small errors can occur, 

which we have to deal with or control.  In this paper for 

structural health monitoring and damage assessment of 

structure, static strain measurement process is used. Static 

strain measurements are definitely more useful than 

displacement measurements, as it reduces the use of costly 

equipments and also avoids the difficulties of displacement 

measurements on full scale structures. 

Implementing a damage identification strategy for aerospace, 

civil, and mechanical engineering infrastructures is referred 

to as Structural Health Monitoring (SHM). There are two 

main approaches to SHM: (a) non-model-based approach and 

(b) model-based approach. Both approaches have been 

successfully used for damage detection in structures. The 

non-model-based approach relies on the signal processing of 

experimental data, while the model-based approach relies on 

mathematical descriptions of structural systems. The 

alternatives to the non-model-based method include: modal 

analysis, dynamic flexibility measurements, matrix update 

methods and wavelet transform technique, which are used to 

determine changes in structures to identify damage. In model-
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base approach uses computer model, such as Finite-Element 

Method (FEM), to identify structural parameter based on 

measured test data.  

The focus of the present work is the sensitivity based damage 

detection method. In this paper a method of estimating the 

parameter of linear-elastic structures using static strain 

measurements, preserving structural connectivity is 

presented. Sensitivity based update methods are based on the 

first order Taylor series, which minimizes the error of non-

linear problem occurrence. This process allows single or 

several static forces to be applied at a subset of degree of 

freedoms (DOF), and the strains to be measured at a subset of 

structural components. It is also possible to identify all or a 

portion of structural cross-sectional properties, including 

element failure. The proposed method has numerically 

demonstrated in this paper for two-dimensional (2D) and 

three-dimensional (3D) frame structures, and the cross-

sectional parameters of those structures are successfully 

identified. 

 

Estimation of Parameter: 
A sensitivity based parameter estimation process is presented 

in this paper to modify the parameters of a finite element 

model with simulated static strain measurements. Forces are 

induced at a subset of degrees of freedoms and with respect 

to that strains are measured on a limited number of structural 

elements. 

Damage Assessment Using Finite Element 
Model: 
The static finite element equation for frame structure can be 

expressed as 

                                   [K]{U} = {F}                           (1) 

 

 Where, [K] is the global stiffness matrix and {F} and {U} 

are force and displacement vector, respectively. Finite 

element model is based on the stiffness relationship between 

forces and displacements. The relationship will be created in 

the form of an element mapping vector {Mn} in global 

coordinates. 

First step is to create {Mn} in the local coordinates such that 

the following relation is satisfied for an elemental strain (ᶯn) 

and displacement {Ūn}. The relation is, 

 

                      ᶯn=  { }{ }                         (2) 

 

then{Un} is transformed from the local coordinates to the 

global coordinates 

                                 
 nU  = [Tn] {Un}                       (3) 

Where, [Tn] = mapping matrix; and {Un} = element nodal 

displacement in the global coordinates. 

and, 

                                 {Mn} = { } [Tn]                       (4) 

 

By substituting the value of  nU  and { } from (3) and (4) 

in (2), we can get the global mapping relation for one 

structural element. That is 

 

                      ᶯn={Mn}{Un}                          (5) 

 

From equation (5), we got the strain-displacement relation for 

system of n elements. Now by vertically augmenting the 

elemental strains and aligning the system degree of freedoms 

horizontally with the system [M] matrix, we get,  

 

                                   {ᶯ} = [M] {U}                         (6) 

 

Now, by assembling{ Ɛ} = element strain vector of size 

NEL×1; {U}= global displacement vector; we got the [M] 

matrix of size NEL×NDOF. 

 

Creation of mapping vector : 
For linear elastic behavior of frame element, the actions of 

axial deformation and bending both causes axial strains on 

the element surface at a known distance from the neutral axis 

are superimposed. These strains are measured length wise, 

which are in  direction. 

                  ᶯn = -ȳ                              (7) 

 

where, ȳ= distance from the neutral axis to strain 

measurement surface and  = translation in ȳ direction. A 

natural coordinate system ξ is induced for finite element 

analysis, ξ can be defined as 

 

                             ξ =  -1                               (8) 

ξ ranges from -1 to +1, for the substituted xvalue, which 

ranges from 0 to L. 

We can express mapping vector {Mn} as 

 

                         {Mn} = { } [Tn]                          (9) 

 

Where, { } = mapping vector of an element n;  The size of 

{ } will be 1×6 for 2D frame and 1×12 for 3D frame, and 

they are represented as 

 

{ } for 2D frame = 

{ (6ξ -  2)  (6ξ +  2) }n; 
 

{ } for 3D frame = 

{   0 (6ξ-  2)  (6ξ -  2)    0  

 

(6ξ +2)  (6ξ +  2) }n; 

and, [Tn] = transformation matrix  of size 6×6 for 2D frame  

and 12×12 for 3D frame, and represented as 

[Tn] for 2d frame =

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

xx xy

xx xy

xx xy

xx xy

l l

l l

l l

l l

 
 
 
 
 
 
 
 
  n 
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and, [Tn] for 3D frame = 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0

xx xy xz

yx yy yz

zx zy zz

xx xy xz

yx yy yz

zx zy zz

xx xy xz

yx yy yz

zx zy zz

xx xy xz

yx yy yz

l l l

l l l

l l l

l l l

l l l

l l l

l l l

l l l

l l l

l l l

l l l

0 0 0 0 0 0 0 zx zy zzl l l

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  n 
 

 

where, 

 =cos(αx),  =cos(αy),  =cos(αz);  

 =cos(αz),   =cos(αx),  =cos(αy); 

 =cos(αy),   =cos(αz),  =cos(αx);   

 

By substituting (1) in (6)  it becomes 

 

                        {e} =  [M] [K(p)]
-1

{F}                           (9) 

 

Where,  {ᶯ}= NEL ×1; [M]= NEL ×NDOF; [K(p)]= NDOF × 

NDOF; and {F}=NDOF ×1. 

 

The element stiffness parameters of the stiffness matrix may 

be a cross-sectional area  A, or a moment of inertia Ixx, Iyy, 

Izzand stored in the vector of parameters {p}. Number of set 

of force(NSF) load cases are used in parameter identification 

method for solving the unknown parameters. By arranging 

the test data horizontally in {e} and {F}, the equation 

becomes 

                         [ᶯ] = [M] [K(p)]
-1

[F]                             (10) 

 

where,  [e] = NEL×NSF; and [F] = NDOF×NSF. 

To eliminate the less important unmeasured strain, [e] is 

partitioned as [ ], correspond to this [M] is also partitioned 

as [ ], where [ᶯb] is the unmeasured strain.  After 

elimination of the unmeasured strain the equation becomes  

 

                        [ᶯa] = [Ma] [K(p)]
-1

[F]                            (11)  

 

where, [ᶯa] = NMS × NSF; [Ma] = NMS × NDOF; and NMS 

= number of measured strain. 

 

Estimation and Minimization of Error 
Function: 
The error function is defined as the difference between the 

analytical strain value [ea] and the measured strain value 

[ᶯa]
m
. It can be expressed as 

 

                            [ᶯ(p)] = [ᶯa] – [ᶯa]
m
                            (12) 

 

The error function will be of size NMS × NSF, and in 

equation (11) due to the inversion of [K(p)], a nonlinear 

function arrives. To linearize [e(p)], the error function matrix 

is vectorized by concatenating all the columns vertically. This 

produces an {e(p)} of size NM × 1, where, the number of 

measurements (NM) will be the product value of NMS × 

NSF. To linearize this {e(p)}, a first-order Taylor series 

expansion is used as 

 

                    {e(p + Δp)} = {e(p)} + [C] {Δp}             (13) 

 

By differentiating [e(p)] one time with respect to p we got the 

sensitivity matrix [C] of size NM × NUP and Δp is the 

change in parameter of size NUP×1. 

A scalar performance error function R(p) is came form the 

reduction of error function {e(p)}, and it can be expressed as 

 

                    R(p) = {e(p + Δp)}
T
 {e(p + Δp)}              (14) 

 

To minimize R(p) with respect to {p}, subjected to pi ≥ 0 for  

i = 1 to NUP, the gradient of R(p) with respect to {Δp}
T
 is set 

to zero, which results a linearized system of equation as, 

 

                       [C]
T
 [C] {Δp} = -[C]

-1
 {e(p)}                (15) 

If [C] is a square matrix then direct inversion may be used 

and {Δp} will be 

                             {Δp} = -[C]
T
 {e(p)}                         (16) 

 

but, when [C] will not be square (NM > NUP), the least-

square method results {Δp} as 

 

                   {Δp} = -([C]
T
 [C])

T
 [C]

T
 {e(p)}                (17) 

 

Examples for Parameter Estimation of 
Frame Structures: 
 

2D Frame Example: 
The first example consist of a 2D frame as shown in“Fig. 1”. 

As it is a frame structure, it is capable of bending and axial 

deformation, so, it will have two parameters as: cross-

sectional area (A) and moment of inertia (Iz). This frame is 

having 18 elements or 18 members, 15 number of nodes. As 

shown in “Fig. 1”, node 11 to 15 is fixed.so, there can be a 

maximum of 36 unknown parameters, total number of DOF 

will be 30. Modulus of elasticity (E) for all elements of the 

frame is taken as 280.6 GPa. and cross-sectional properties 

are taken as specified in“Table-1”. There are 9 cases for the 

parameter identification of the 2D frame example. In case 

1,3,4,5,6,7,8,9 applied forces are   500 N or 200 N.m. and for 

cases 11,12,13,15 applied forces are 600 N or N.m,800 N or 

N.m,700 N or N.m,900 N or N.m respectively, for case-14 

forces are 800 N or 400 N.m. 
 

Table-1. Cross-sectional Properties of 2D Frame 
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Table -2. Different Applied Load Cases for Analysis: 

 

Case 

 

FDOF 
ᶯ 

 

Load 
(N or N.m) 

 

Iteratio

ns 

1 16 to 30 1 to 18 500 N or 200 N.m 3 

2 
2,5,8,11,14,17, 

20,23,26,29 

4,7,9,12,

15,18 
500 N or 200 N.m 4 

3 
4,5,8,9, 
15,21,25 

1,6,12,17 500 N or 200 N.m 3 

4 
1,2,12,15,16 

17,27,30 
6,8,11,16 500 N or 200 N.m 2 

5 6,9,12,16,21,27 
10,11,16,

17 
600 N or 600 N.m 6 

6 19,20,27 2,9,10,18 800 N or 800 N.m 3 

7 6,12,21,30 6,13 700 N or 700 N.m Singular 

8 2,6,18,30 5,9,15 800 N or 400 N.m 5 

9 11,12,19,21 3,6,8,11 900 N or 900 N.m 3 

 

 
 

 
 

Fig. 1 –  4 Bay 2 Storied 2D Frame 

 

Bar chart-1: Error in Cross-sectional Area (2D Frame): 
 

 
 

Bar chart-2: Error in Moment of Inertia (2D Frame): 
 

 

 

Parameters 

 

Initial 

 

True 

 

Area 

A1 to A4           

and                    

A10to A13 

 

900 × 102  mm2 

 

855 × 102  mm2 

A5to A9           

and                                       

A14to A18 

 

1600 × 102  mm2 

 

1760 × 102  mm2 

 

Moment of 

Inertia 

Iz 1 to Iz 4            

and                          

Iz10 to Iz13 

 

67500 × 104  mm4 

 

81000 × 104 mm4 

Iz 5 to Iz 9            

and                          

Iz14 to Iz18 

 

213333 × 104  mm4 

 

170666.4 × 104  mm4 
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Load case analysis of case-9 of “Table-2” is done with the 

help of MATLAB and in this case we have detected some 

errors in moment of inertia which is very less and  there is 

having no errors in cross-sectional area of  all members 

they as shown in the “Bar chart-1” and “Bar chart-2”.  

 

3D Frame Example: 
“Fig. 2” shows the example of a 3D frame structure. As it 

is also a frame structure, it will also be capable of bending 

and axial deformation and parameters will also be similar  

 

 

 
Fig. 2 – 2 Bay 1 Storied 3D Frame  

 

to the previous frame example.This frame is having 13 

elements or 13 members, 12 number of nodes. As shown in 

“Fig. 2”, node 4 to 6 and 10 to 12 is fixed.so, there can be  

a maximum of 13 unknown parameters, total number of 

NDOF will be 36, but in “Fig. 2” the DOf s are represented 

as their global number. Modulus of elasticity (E) for all 

elements of the frame is taken as 280.6 GPa. torsional 

constant (J) is taken as 27795 GPa and cross-sectional 

properties are taken as specified in “Table-3(a)” and 

“Table-3(b)”. There are 2 cases for the parameter 

identification of the 3D frame example. The load cases are 

specified in “Table-4”. 

 

Table-3 (a). Cross-sectional Properties of 3D Frame 

 

Table-3 (b). Cross-sectional Properties of 3D Frame 

 

 

Parameters 
 

Initial 
 

True 

Moment 

of 

Inertia 

Iz 1 to Iz 4            

and                         
Iz10 to 

Iz13 

67500 × 104  mm4 81000 × 104 mm4 

Iz 5 to Iz 9            

and                          

Iz14 to 
Iz18 

213333 × 104  mm4 170666.4 × 104  mm4 

 

 

Table -4. Different Applied Load Cases for Analysis: 

 

 

Case 

 

FDOF 
ᶯ 

 

Load 
(N or N.m) 

 

Iterations 

 

1 

 

4 to 12 

49 to 54 

 

2,4,8,9, 

11,13 

 

200 N or 

100 N.m 

 

4 

 

2 

 

8,9,44,45, 

50,51 

 

3,5,7, 

11,13 

 

200 N 
 

Singular 

 

 

Bar chart-3: Error in Cross-sectional Area (3D Frame): 

 

 

 
Load case analysis of case-1 of “Table-4” is done with the 

help of MATLAB and in this case we are not be able to 

identify the moment of inertia properly, there are having so 

many errors which consist of large magnitude, but in case 

of identification of cross-sectional area, this process has 

successfully identified a part of the members, more 

specifically the beam elements have been identified very 

closely, as they are having very less magnitude of error. As 

shown in “Bar chart-3” and “Fig. 2”, member 1, 2, 6, 7, 8, 

9, 10 are identified with a very less error. 

 
Conclusions 
This method has successfully identified the parameters at 

the element level by applying forces at some limited 

numbers of degrees of freedoms and also by taking strain 

measurements at some selective locations for linear elastic 

structures. The difference between analytical strain and 

measured strain forms the performance error function. The 

cross-sectional element properties for frame such as, areas 

and/or moments of inertias are identified by minimizing 

that performance error function. 

  Two examples are presented here and assessment has 

been done successfully to some extent. It is also identified 

that if NM ≥ NUP, it is possible to identify the parameters. 

So, this method can successfully identify the parameters of 

2D structures. In case of 3D structures the capability of 

 

Parameters 

 

Initial 

 

True 

 

Area 

A1 to A2          

and                    

A6to A10 

 

900 × 102  mm2 

 

855 × 102  mm2 

A3to A5    

and                                       

A11to A13 

 

1600 × 102  mm2 

 

1760 × 102  mm2 
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simultaneous identification parameters are reduced. Either 

subset of measurements has to change to avoid large 

changes in identified parameters or only a partial set of 

parameters can be identified. 

Future work can include some improvement in this method 

to overcome the limitations of identifying all the 

parameters properly and the damage assessment of frame 

structure for dynamic responses can also be done.  So that, 

we will be able to identify the parameters of any type of 

frame structures for both static and dynamic responses. 
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