

96

Threads and Computer Performance in

OpenMP

Arsen Kurti, Igli Tafa, Ermela Cekani Hysa

Computer Science, Faculty of Information and Technology, Polytechnic University Tirana

Abstract--- In our days we want to run multiple jobs in

the same time in the system. Most of computers systems

have multiple processors or multiple execution cores.

This makes the concurrency higher. I choose the theme

about threads because I wanted to know more about the

basic unit of software that operating systems deal with

“threads”. In this article I am going to describe these

threads and I am going to do an experiment to explain

better how they affect the load of CPU and the

performance too.

Keywords --- multi processors, threads, CPU

performance

I. Introduction
A very common question that comes is: Are thread

faster? Faster for what? What they actually do? First I

will explain each of them.

Thread exist inside of processes. In Linux when a

program is being executing automatically a new

process is created, and the process create a thread that

runs sequentially. That thread may create other

threads, that run the same program but each of them

execute different part of it. Thread and its process are

different from each other because processes group

resources together and threads are the entities

scheduled for execution on the CPU. Multiple threads

may run parallel inside a process, this is equal as

many processes running parallel in one computer [2].

Hyper-threading technology is used first in February

2002 on Xeon server processors and on November

2002 on Pentium 4 desktop CPU. After it took place

in Itanium Atom and Core ‘i’ series CPUs [1].

Why to use thread?

If there is an application that have some activities

going on at once, an blocking will occur. The

situation will be much more easer if decomposing

this in threads that will run in quasi-parallel. They are

easy to be created and to be destroyed too. To create

a thread is much more faster than creating a process.

And they are really very powerful in systems with

multiple CPUs because a real parallelism happens.

 Fig 1 Fork and Join Model

In the figure 1 at first when a program starts to run

only one thread exist and that is master thread. This

thread by using the directives, create parallel threads.

After all of instructions are executed the result

synchronization happens till the program complete.

The other questions is where is better to use threads?

It is found that OpenMP has some performance

advantages over Windows this is related with startup

cost[3]. OpenMP is an API Application

Programming Interface for parallel applications in

architectures with shared memory.

The other thing that confuses us is deciding how to

thread my code?

First is to separate the program into parts that can run

independently , and for each of these parts to create

threads. For example to separate it for different

functions or to thread that part of the code that takes

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

97

more time. In lower level of code OpenMp makes so

easy the threading process.

How many parts could we implement to thread this

code?

OpenMP library helps me to decide the best number

of threads to be used in a code, this will help me for

the best speedup. We mustn’t spend time creating

threads that won’t be used.[9]

II. Related works
OpenMP when first presented, lot of scientist find

the best solution for complex applications instant of

using supercomputers . It published its first API IN

1997 for Fortran one year later for C/C++. [4]. To

improve thread level parallelization, synchronization

has been tested to extract thread in hardware or in

software then they are executed in parallel. [5]

Another important thing is Amdahl’s Law. This law

expected to find maximum improvement to overall

system. His law confirm the maximum speeding up

of the parallelized version is 1.36 times faster that

non parallelized implementation [6]. Another

research has been done to compare OpenMP with

Pthreads. OpenMP has the advantage of less memory

usage and less direct inter-thread communication,

Pthreads were OpenMP in lower level. They have

almost the same assembly code but their interfaces

are very different. [7] Every concept must be very

clear to do a experimental work so I will explain two

models of threading

User-level threading is when a library support thread

creation, joining, termination, scheduling. But if a

containing process is blocked every other threads of

the same process are blocked.

Kernel –Level threading are slower than user

threads, but blocking one thread will not cause the

other threads of the same block to be blocked . On

Linux C Library implements threads [8]

III. Theory of experiment

In this section we are going to do two

programs, one serial program and the other

parallel program. And we are going to study

how the loops are parallelize and how the

performance is affected. The algorithm and

its implementation are explained at section

4. In the end of this article (section 5) we

have summarizes our findings and also the

future prospects.

A. Environment

I executed my code on Ubuntu OS 12.04.

chooseOpenMP to do the experiment because it

provide parallel executions also it has a high capacity

which grows up every day. The hardware I used was

Pentium(R) Dual-core CPU with 2 GB of RAM. The

operating system was 64 bit.

B. Programming Languages

Two create two programs with the same soft but one

serial execution and one parallel execution I choose

C programming language because I was very familiar

with it, and Open multi processing supports very

well programming in C language.

IV. Experiment Phase
In the next section of the article a quick view of the

experimental phase is presented. Two programs are

executed in Ubuntu to find the maximum in a vector

but one of them in serial and one in parallel. We

measured their time of execution. The parallelization

is done by #pragma omp directory. We include the

<time.h> library to be able to call the function

omp_getwtime() We cached the time before and

after execution, find the difference between them and

that is exactly the time of execution.

A. Algorithm of the

experiment

The experiment is performed in a multiprocessor

computer.

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

98

Fig 2: Algorithm scheme

1. Start the program

2. Let`s suppose that the first element of the

array is maximum.

3. The variable goes till the end of an array.

4. If another element of the array is bigger than

the first maximum, that element becomes

the maximum of an array.

5. End of the program

V. Experim. Environment
First of all we have installed UBUNTU OS in my

computer, then execute

sudo apt-get install gcc-4.6

command in the terminal to install OpenMp Library.

To execute the program we used these command:

1- Open terminal

2- cd Desktop

3- gcc –fopenmp serialproject.c –o serialproject

4- ./serialproject

5- gcc –fopenmp parallelproject.c –o

parallelproject

6- ./parallelproject

Fig 3: Executing two programs

A. Observation of Experiment

While the program was running we directly open the

system monitor to see what happens.

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

99

Fig 3 :Linux processes System Monitor

Process table in graph form shows CPU performance

memory and network performance too. By clicking

over processes overview all the programs currently

running on system because a lot of them run in

background. To see which process uses larger CPU

time we click % CPU so it will sorted automatically.

In figure 3 parallel project uses the most % of CPU

Fig 4: Linux Resources history

VI. Results
The reason why I worked with this theme was to be

well informed about parallelism in computer systems

and to see better in practice how it works. First I

measure the time for the first execution, parallel for

directive, then we measured it twice .The execution

time was approximately two times faster. Every

application must be thread because the same

program, the same numbers, the same logic,

analogically by few words the same work is done

faster by using parallel region than serial region. Here

is the advantages of parallel version.

VII. Future Work
By seeing how technology has evolved till nowadays

the future seems to be everything computerized. So

the matter of time is the most critical point. OS

communities will be expanded much more by using

multithreading for application-level parallelism. The

sequential thread-based programming will be less

efficient since the numbers of cores are increasing

more and more.

References

[1]http://www.xbitlabs.com/articles/cpu/displat/pentium4-

3066.html

[2]Modern Operating Systems Tanenbaum

[3]Basic OpenMP Threading Overhead

[4]http://en.wikipedia.org/wiki/OpenMP#History

[5] A Clustered Approach to Multithread Processors

Resources history: There are two processors in

computer and each of it has different history line.

During the real time running is shown CPU

utilization. Memory and Swap History we can see

two running real-time graphs, one part of memory

used by the user and the other swap space used by

user. Network history: shows how many data will be

send or will be received in the network interfaces

[6] Validity of the single processor approach to the achieving

Large scale computing capabilities.

[7]Using OpenMP,Portable Shared Memory Parallel Programming

Ruud Van Der Pas.

[8]http://en.wikipedia.org/wiki/Thread_(computing)

[9] Programming on Parallel Machines Califonia University

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

100

APPENDIX

Serial programming

#include<stdio.h

#include<stdlib.h>

#include<time.h>

#include<omp.h>

#define E 200000000

float v[E];

int main(void)

{

float maximum=-10000;

intstart_time,end_time;

longi,x=0; int y=0;

start_time=omp_get_wtime(); // put the time at the beginning of execution

for(i=0;i<E;i++)

v[i]=i*0.4333;

for(i=0;i<E;i++)

{

if (maximum<v[i])

maximum=v[i];

for (x=0;x<100;x++)

y=x*0.7;

}

end_time=omp_get_wtime(); // time since a fixet point in the past

printf("In the vector maximum number is=%f\n",maximum);

printf("Calculation takes:%d seconds\n", end_time-start_time);

}

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

101

Parallel Programming

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

#include<omp.h>

#define E 200000000

#define NUM_THREAD 3

float v[E];

int main(void)

{

float maximum=-10000;

intstart_time,end_time;

longi,x=0;

int y=0;

intnthr;

floatth_max[NUM_THREAD]={0.0,0.0,0.0};

start_time=omp_get_wtime();

#pragma omp parallel private(i,x,y,maximum),shared(v,th_max) // code inside this reagon runs in parallel

{

#pragma omp for

for(i=0;i<E;i++)

v[i]=i*0.4333;

nthr=omp_get_num_threads();

#pragma ompfor //parallel keyward is needed to create some new threads

for(i=0;i<E;i++)

{

if(maximum<v[i])

maximum=v[i];

for (x=0;x<100;x++)

y=x*0.7;

}

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

102

th_max[nthr]=maximum;

}

for(i=0;i<NUM_THREAD;i++)

if(maximum<th_max[i])

maximum=th_max[i];

end_time=omp_get_wtime();

printf("In the vector maximum number is=%f\n",maximum);

printf("Calculation takes:%d seconds\n", end_time-start_time);

}

Bibliography
Arsen Kurti was born at 1977 in Vlora. He finished

high school at hometown. At 2000 he was graduated

as Computer Engineering Specialist. He was IT

Header at Raiffeissen Bank in Tirana from 2001-

2005. At 2005-2013 he was Chief at Microsoft

Albania. Now he is Phd student and he is preparing

thesis for Cloud Efficiency.

 International Journal of Advances in Computer Science & Its Applications – IJCSIA
 Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

