
International Journal of Advances in Computer Networks and Its Security– IJCNS
 Volume 4 : Issue 3 [ISSN 2250 – 3757]

 Publication Date : 30 September, 2014

An Algorithm to Detect Inconsistencies in Access

Control Policies
Muhammad Aqib, Riaz Ahmed Shaikh

Abstract—Inconsistency in access control policies exists when

two or more than two rules defined in the policy set lead to the

contradictory decisions. It makes it difficult for the system to

decide which rule is applicable to the current scenario and hence

make the system vulnerable to the unauthorized use. Different

inconsistency detection methods have been proposed by

researchers. However, those suffer from various limitations. In

this article, we propose an algorithm that detects the

inconsistencies in the policies using decision trees and returns the

inconsistent rules with contradictory attribute values.

Keywords—access control, inconsistency detection, policy

validation1

I. Introduction
Security of the software applications is a critical issue. For

this purpose, different mechanisms are used to restrict the
users of enterprise applications from the unauthorized use.
One of such mechanisms is access control policies. The rules
in these policies could be defined using different languages
such as XACML [1]. In order to ensure that the application
resources are secure and out of the reach of unauthorized
users, these policies should be defined in such a way that there
should be no error, ambiguity and overlapping of rules.

 Defining policies in an error free manner is not a
trivial task, especially for big organizations that contains large
number of users and resources. The most common problem
that they deal is the presence of inconsistent rules. Detecting
inconsistent rules in large set of complex policies is a
challenging task. Many researchers have proposed solutions
[2][3][4][6][7] but they suffer from various limitations. For
example, inefficient handling of Boolean expressions, and
dealing of only discrete attributes etc.

 In this paper, we are going to present an algorithm-
based approach to detect the inconsistencies which is capable
of handling both continuous and discrete attribute values.
Furthermore, it is not only applicable to dynamic data but it
also handles Boolean expressions that include contextual
attributes such as time and date.

The rest of the paper is organized as follows. Section II
defines the inconsistency. Section III gives a brief description
of the proposed algorithm. Section IV contains qualitative
comparison with existing validation methods. Finally, Section
V concludes the paper.

Muhammad Aqib, Riaz Ahmed Shaikh

Computer Science Department,
Faculty of Computing and Information Technology,

King Abdulaziz University,

Jeddah, Saudi Arabia.

aqib.qazi@yahoo.com, rashaikh@kau.edu.sa

II. Concepts and Definitions
Inconsistency in the policy set exists when any two rules in

that policy set lead to the contradictory outcomes. For
example, if a rule defined in the policy set allows a user to
access some resources during a specific time span but there
exists some other rule in the same policy set which deny the
user to access the same resource during some other time slots.
However, if these time slots are same or they overlap, then we
say that these two rules lead towards the contradictory
statements and therefore they are not consistent. Hence, the
policy set is said to be inconsistent. The rules defined by the
administrators consist of different attribute values and the
values of these attributes lead them to some decision.

Let is the set of subjects,
 is the set of objects,
 is the set of contexts, and
 is the set of actions. Let
 be the set of decision attributes.
In access control policy, a rule can be defined in four tuple
form: . Let is the set of rules. Two rules
 such that are said to be inconsistent if si =

sj, oi = oj, ai = aj, ci = cj, and have contradictory decisions i.e.
 and , .

III. Inconsistency Detection
Algorithm

In this section, we present a new inconsistency detection
algorithm for access control policies. It works in two phases.
In the first phase, it takes a decision tree as an input and
divides it into sub-trees based upon the number of decision
attribute values. In the second phase, algorithm takes sub-trees
as an input and compares them recursively to detect
inconsistencies.

A. Decision Tree Hierarchy
In the tree, the root node is at the first level of the decision

tree whereas the decision attribute (d) is on the top of the
attributes hierarchy that is the child of the root node and exists
on the second level as shown in the Fig. 1. These nodes
include the action attributes in their child attribute list so the
action attributes are on the third level in the tree hierarchy.
Object attributes are the direct children of the action attributes
and exist in the children attribute list of the action attributes.
So they are on the fourth level in this hierarchy. In this tree
hierarchy, the subject nodes are on the fifth level and they
exist in the children attribute list of the objects which are the
parents of subject attribute nodes. Subject attribute nodes in
turn contain the contextual attributes in their children attribute
lists and exists on the sixth level of this hierarchy and they are

International Journal of Advances in Computer Networks and Its Security– IJCNS
 Volume 4 : Issue 3 [ISSN 2250 – 3757]

 Publication Date : 30 September, 2014

Figure 1. Sample hierarchy of the decision tree

Figure 2. Proposed algorithm to detect inconsistencies in access control policies

 also the leaf nodes of the policy tree. It then starts the
validation process and returns the inconsistent rules in case
inconsistencies found in the policies.

B. Inconsistencies Detection Process
As discussed above, the proposed algorithm consists of

two parts that are clearly shown in Fig. 2. Description of both

the parts is given below.

Step 1: In this step, the main tree will be divided into the

sub-trees equal to the number of decision attributes. For this

purpose it will count the number of decision attribute nodes

that are the children of the root node (Part A, Line: 3). If there

is only one decision attribute node in the children node list of

the root node (Part A, Line: 4), then the algorithm will stop

and it will display no inconsistency found message (Part A,

Lines: 18, 19). In another case, the main tree is divided into

the sub-trees equal to the number of decision attributes in the

children attributes list of the root node (Part A, Lines: 5-15).

Suppose there are two decision attributes, permit and deny as

shown in the Fig. 1. In this case the main tree is divided into

the two sub-trees as shown in the Fig. 3. All the policies with

category attribute value “permit” are presented in the first tree.

Similarly, all the other rules are presented in the second tree

with category attribute value “deny” as the root node.

International Journal of Advances in Computer Networks and Its Security– IJCNS
 Volume 4 : Issue 3 [ISSN 2250 – 3757]

 Publication Date : 30 September, 2014

Step 2: After having separate trees for each decision node

as shown in the Fig. 3, our algorithm will start comparing two

sub-trees using the CompareNodes function (Part A, Line: 16).

It will compare only if both of the trees are not null (Part B,

Line: 2, 3). If the child node type in both trees is action and the

node values are also same, then it will pick those nodes and

will call the CompareNodes function again (Part B, Lines: 12-

14). In Fig. 3, the child node of decision attribute node is

action node and its value “Read” is same in both sub-trees.

Now the action node will become the root node of both the

trees passed to the CompareNodes function as shown in Fig. 4.

Both the trees shown in Fig. 4 are not null (Part B, Line:

1), it will get the child nodes of the root node (action node is

root node here) and the object attribute nodes are the child

nodes at this step (Part B, Lines: 2, 3). Now it will compare

the values of object attributes and will call the CompareNodes

function again if they have the same values in both trees (Part

B, Lines: 12-14). As shown in the Fig. 4, object nodes having

“File1” are same in both the trees so now sub-trees will be

having them as root nodes. The Fig. 5 shows the resulting

trees passed to the CompareNodes function in result of this

comparison.

Figure 3. Sub-trees generated with decision attribute as the root node.

Figure 4. Sub-trees generated with action attribute as the root node.

Figure 5. Sub-trees generates with object node as the root node.

Figure 6. Sub-trees generated with subject node as the root node.

International Journal of Advances in Computer Networks and Its Security– IJCNS
 Volume 4 : Issue 3 [ISSN 2250 – 3757]

 Publication Date : 30 September, 2014

The CompareNodes function will compare the trees shown

in Fig. 5 where object attribute node is the root node. It is clear

that the child node type is subject node and “Joe” is the same

attribute value in both the trees. So CompareNodes function

will be called again and this time the subject attribute node

will be the root node in both the sub-trees passed as

parameters. The Fig. 6 shows the resulting sub-trees with

subject attribute nodes as the root nodes.

These trees will be passed to the CompareNodes function

and they have contextual attributes as their child nodes. So this

time the CompareNodes function will not be called again and

contextual attributes will be compared in step 3 of the

algorithm.

Step 3: As mentioned above, if the child node type in both

the trees is context node, the CompareNodes function will not

be called because these are the leaf nodes of the decision tree.

It also indicates that all the other attributes are same. Now, it

will start comparing the contextual attribute values (Part B,

Lines: 4, 5). If the contextual attributes have the same values,

it means both these rules are same. In Fig. 6, we can see that

there is a contradiction in time attribute. The user is permitted

to access the resource on Monday from 0800 to 1600 but on

the same day, he cannot access the resource from 1400 to

1600. So it will get all the parent nodes of those contextual

attributes to get those rules (Part B, Lines: 6-8) as shown in

Fig. 7. Here all attribute-values of both the rules are same, it

means they are inconsistent and hence they will be stored in

the list of inconsistent rules (Part B, Line: 9). The Same

process will be repeated until all the sub-trees generated

during step 1 are compared with each other.

IV. Qualitative Comparison
In Table 1, we have compared our method with existing

different inconsistency detection methods [2-7]. We have
compared all these methods on the basis of the parameters
defined in this table. These include inconsistency detection,
inconsistency resolution and use of Boolean expressions. In
addition we also have tested whether the proposed methods
support the continuous data values or it is limited to the
discrete values only. Similarly, the handling of dynamic data
in addition to the static data and the use of contextual
attributes has also been compared in qualitative comparison of
these proposed methods.

V. Conclusion
In this article, we have proposed an algorithm to detect

inconsistencies in the access control policies. It provides a
solution to validate the access control policies especially those

Figure 7. Rules with contradictory decisions identified.

TABLE 1. QUALITATIVE COMPARISON OF EXISTING AND PROPOSED ACCESS CONTROL POLICY VALIDATION TECHNIQUES

 Approach
Inconsistency

Detection

Boolean

Expression

Continuous Data

Handling

Dynamic Data

Handling

Contextual

Attributes

Our Proposed

Method
Decision Tree based Algorithm Yes Yes Yes Yes Yes

V.R. Karimi

& D.D.

Cowan [2]

Model checking Alloy Yes No No No No

Ma et al. [3] Model Checking SPIN Yes No No No No

Bravo et al.

[4]
DTD graph, algorithms Yes No Yes No No

Shaikh et al.

[5]
Data classification Yes Yes Yes Yes Yes

Fisler et al. [6] Decision diagrams MTBDD Yes Yes No No No

Bauer et al.

[7]

Association rule mining

approach
Yes Yes No Yes No

International Journal of Advances in Computer Networks and Its Security– IJCNS
 Volume 4 : Issue 3 [ISSN 2250 – 3757]

 Publication Date : 30 September, 2014
which involve contextual attributes and expressions. By
supporting Boolean expressions, continuous attribute values
and contextual attribute values, our proposed algorithm
reduces the number of rules. However, this approach also has
some limitations. For example, this algorithm supports
bounded continuous attribute values and does not provide any
solution for detection and resolution of incompleteness
problem. So in the future, we are planning to address these
issues and also to improve the performance in terms of
computational complexity.

References

[1] E. Rissanen, “eXtensible Access Control Markup Language (XACML)

Version 3.0 OASIS Standard.” http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf, Jan 2013. Accessed:

2014-02-03.

[2] V. R. Karimi, and D. D. Cowan, "Verification of Access Control

Policies for REA Business Processes", 33rd Annual IEEE Int. Computer

Software and Application Conf., 2009, p 422-427.

[3] J. Ma, D. Zhang, G. Xu, and Y. Yang, "Model Checking Based Security

Policy Verification and Validation", in Proc. of the 2nd International

Workshop on Intelligent Systems and Applications (ISA) , IEEE, 2010.

[4] L. Bravo, J. Cheney, and I. Fundulaki, "ACCOn: Checking Consistency

of XML Write-Access Control Policies", In proc. of the 11th Int. Conf.

on Extending Database Technology: Advances in Database Technology,

EDBT, 2008, pp. 715-719.

[5] R. A. Shaikh, K. Adi, L. Logrippo, S. Mankovski, "Inconsistency

Detection Method for Access Control Policies", in Proc. of Sixth Int.

Conf. on Information Assurance and Security, 2010, pp. 204-209.

[6] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,

“Verification and change-impact analysis of access-control policies,” in

Proc. of the 27th Int. Conf. on Software engineering, NY, USA, 2005,

pp. 196–205.

[7] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and Resolving Policy

Misconfigurations in Access-Control Systems”, SACMAT, June 2008,

USA.

About Authors:

Muhammad Aqib is a student in King Abdulaziz University,

Jeddah, Saudi Arabia. He is doing his master and is attached to

the Department of Computer Science in Faculty of Computing

and Information Technology. His research interest includes

privacy, security and database management.

Riaz Ahmed Shaikh is an Assistant Professor at Computer

Science Department in the King Abdulaziz University, Jeddah,

Saudi Arabia. He obtained his Ph.D. from Computer

Engineering Dept., of Kyung Hee University, Korea, 2009,

M.S. in Information Technology from the National University

of Sciences and Technology, Pakistan, 2005, and B.Sc. in

Computer Engineering from Sir Syed University of

Engineering & Technology, Pakistan, Feb. 2003. His research

interest includes privacy, security, trust management, wireless

sensor networks, and vehicular networks. He is a reviewer/

editorial board member of various international journals,

e.g., IEEE Transaction on Parallel and Distributed Systems,

IEEE Computer Journal, Elsevier International Journal of

Systems, Control and Communications, Elsevier Mathematical

and Computer Modeling, Journal of Communications and

Networks, Oxford Computer Journal, Transactions on

Emerging Telecommunications Technologies, International

Journal of Internet and Distributed Systems, and many more.

He is a member of the ICST and the ACM. For more

information please visit http://sites.google.com/site/riaz289/ .

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://sites.google.com/site/riaz289/

