

43

The Rapid Sort
 Mriganka Sarmah , Heisnam Rohen Singh

Abstract— Sorting is arranging a collection of elements either in

ascending or descending order. There are various applications of

sorting algorithm in every field of science. Already there exist

different sorting algorithms with different complexities. In worst

case, the best known complexity is O(n log n). In this, a sorting

algorithm is developed and compared with the existing sorting

algorithm. It is found the new algorithm is much better than the

existing sorting algorithm like the Quick Sort, Merge sort etc.

This algorithm is much better for closely related datasets. To

sort the element in reverse order it can accomplished the sorting

in O(n).

Keywords— Sorting, complexity, worst case, reverse order.

I. Introduction

A. Sorting:
It is nothing but arranging a collection of elements in a

sequence i.e. either ascending or descending order. There are

lot of application of sorting where data need to be arranged.

For example the details of the students in a class can be easily

analysed if the students can be arranged in alphabetical order.

So, to arrange them the sorting algorithm can be used. Already

there exists lots of sorting algorithm like Quick sort, Merge

sort, Insertion sort, Radix sort etc.

B. Analysis of algorithm:
In order to find which algorithm is better than other we need to

compare these algorithms. To compare, the complexity of

these algorithms need to be calculated.

There are two types of complexity. They are:

i) Space Complexity: It gives the total amount of

memory requires to perform the algorithm.

ii) Time Complexity: It gives the total amount

of time requires to perform the algorithm.

Now-a-days, when we talk about the complexity, we mean

time complexity as, the memory becomes very cheap. One

way of comparing is based on the exact running time of all

algorithms but it depends upon processor and language used.

Mriganka Sarmah(Author)

Assam down town University

India

Heisnam Rohen Singh(Author)

Assam down town University

India

Even if the processor and language are same, calculating the

exact time is difficult as it would require CPU utilization may

be different. The time complexity is dependent on the number

of input. So, it is expressed in term of number of input or input

size. Two algorithms can be compared by using the rate of

growth function, f(n) of the algorithms expressed in term of

number of input n. the algorithm with lesser rate of growth

function is better than the other. If the rate of growth function

is high when the numbers of input increase the number of

operation also increase.

II. Existing Sorting Algorithm
There are lots of sorting algorithms. Some of the common

sorting algorithms are given here.

1. Bubble sort
[1][2]

: In this algorithm the larger elements

are pushed back to one end. It compared the two

consecutives elements if the second element is

smaller than first one the two elements are swapped

and the larger element is pushed at back. It continues

doing this for each pair of adjacent elements to the

end of the data set. It is continue till no swapping is

done.

2. Insertion sort
[3][4]

: This algorithm is just like the

technique of arranging cards in card playing. It works

by taking elements from one by one from the list and

inserting them in their correct position into a new

sorted sequence.

3. Selection sort
[5][6]

: In this sorting algorithm the

smallest is element from list is found and swapped

with the first element. The second smallest is

swapped from second element. These are repeated

until all elements are sorted.
4. Quick sort

[7][8]
: In this algorithm, an element is

chosen as pivot element and in each step the exact

position of the pivot element is found. A pivot

partition the elements in two part, one parts consist of

all elements less than the pivot and other consisting

of all elements greater than pivot. The same step is

repeated for each partition.

5. Merge sort
[9][10]

: This algorithm is based on Divide

and Conquer technique. The lists of elements are

divided in smaller sorted list. And these small sorted

lists are merged in single sorted list.

III. RAPID SORT
In this sorting first, the minimum and maximum element from

the sequence is found and placed in extreme ends of the

sequence. These ends are mark as lower bound and upper

bound i.e. minimum and maximum element are put at lower-

bound and upper-bound respectively.

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

44

Consider the following sequence of element:

4 5 12 1 14 7 8 20 6 3

In the above example the minimum element is 1 and maximum element is 20. So 1 is put in the first mark by lower bound and the

element 20 is put at last, mark as upper bound.

lower_bound upper_bound

1 5 12 4 14 7 8 3 6 20

The other remaining elements in the sequence are placed

alongside nearer extreme end which is calculated by

comparing the absolute values of |minimum - element| and

|maximum - element|. If the element is nearer to the lower

bound the lower bound is set to the new element position,

otherwise the upper bound is set to the new element position.

In the example , the next element is 5 and the element is nearer

to the element in lower bound. Hence, the element 5 is placed

along side lower-bound. Lower-bound is reset to second

position.

 lower_bound upper_bound

1 5 12 4 14 7 8 3 6 20

Next element 12 has distance of 11 from minimun and 6

from maximum, hence it was placed along side upper

bound. The upper_bound is reset to ninth position.

 lower_bound upper_bound

1 5 6 4 14 7 8 3 12 20

Element 6 has distance of 5 from minimum and 12 from

maximum, hence it was placed along side lower_bound. This

number 6 is compared with the element in lower_bound i.e. 5.

As 6 is larger than 5 the position of 6 is found and

lower_bound is reset.

 lower_bound upper_bound

1 5 6 4 14 7 8 3 12 20

Number 4 has distance of 3 from minimum and 16 from

maximum, hence it was placed along side lower_bound. After

that the exact position of the new element 4 is found by

comparing in lower half. lower_bound is reset to next

position.

 lower_bound upper_bound

1 4 5 6 14 7 8 3 12 20

For element 14, Place near upper_bound After finding the

exact position.

 lower_bound upper_bound

1 4 5 6 3 7 8 14 12 20

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

45

 lower_bound upper_bound

1 4 5 6 3 7 8 12 14 20

For element 3, the scenario is as shown below.

 lower_bound upper_bound

1 4 5 6 3 7 8 12 14 20

 lower_bound upper_bound

1 3 4 5 6 7 8 12 14 20

Similarily, for element 7 and 8 the exact position can be

found. And at last the lower_bound and upper_bound will be

differ by 1 at that moment the operation is stopped.

 lower_bound upper_bound

1 3 4 5 6 7 8 12 14 20

In this algorithm, for each element after finding the nearer end

the exact position need to find. To find the position linear

search
 [11][12]

or binary search
[13][14]

 can be used. And in

positioning the element shifting of the elements may involved.

To overcome this shifting, different data structure like linked

list
 [15]

 can be used. In that, shifting can be just changing some

pointers.

start

start lower_bound upper_bound

start lower_bound upper_bound

Start lower_bound upper_bound

Start lower_bound upper_bound

start lower_bound upper_bound

4 5 12 1 14 7 8 20 6 3

1 4 5 12 14 7 8 6 3 20

1 4 5 12 14 7 8 6 3 20

1 4 5 12 14 7 8 6 3 20

1 4 5 7 8 6 3 14 12 20

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

46

 Start lower_bound upper_bound

Number 7 and 8 is as shown below.

Start lower_bound upper_bound

Start lower_bound upper_bound

 start lower_bound upper_bound

Finally Number 3 is linked in its proper position. The number

of exchanges

might be trivial but links are formed in O(1)

time.

Start lower_bound upper_bound

The idea discussed might be involving a double link list.

IV. PROPOSED ALGORITHM
We assume we are sorting an array in ascending order.

Begin

 From an Array of n numbers find the minimum(A) and

maximum(A).

 insert minimum(A) at the beginning and maximum(A) at

the end.

 Set lower_bound=0, upper_bound=Last

 /*lower_bound points to the recent most element

on left side. upper_ bound points to the recent

most element on right side*/

 Get next_number.

 Dist(lb)=abs(minimum(A) - next_number)

 Dist(ub)=abs(maximum(A) - next_number)

 /*steps : To find out the proximity towards

either of the far ends*/

 If Dist(lb) <Dist(ub)

 Insert next_number to the right of

lower_bound

 Else

 Insert next_number to the left of

upper_bound

 Set tempLB=lower_bound, tempUB=upper_bound

While (next_number < A[tempLB]) /*finding the position

of the number in lower half*/

 Insertion _Sort(next_number, A[tempLB])

 tempLB- - /*Resetting the lower_bound*/

 While(not true : next_number < A[tempUB] /*finding

the position of the number in upper half*/

 Insertion_Sort(next_number , A[tempUB]))

 tempUB++ /*Resetting the upper_bound*/

 Repeat for all remaining elements.

End

V. RESULTS AND DISCUSSION
The experiment was performed using the linear data

structure array. The datasets is generated using the C in-built

rand() function. This algorithm is compared with the

common existing algorithm like Bubble sort, Insertion sort

Quick sort, Merge sort. The complexity of the algorithm

depends mostly upon the number of comparisons to do the

1 4 5 6 7 8 3 12 14 20

1 3 4 5 6 7 8 12 14 20

1 4 5 7 8 6 3 12 14 20

1 4 5 7 8 6 3 12 14 20

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

47

sorting. So, in this the numbers of comparison of various

algorithms are compared and are shown in the following

figure. This experiment is fully programmed using turbo C

in a windows 7 platform.

VI. CONCLUSION
Based on the experience a chart is shown above the number

of comparisons with the number of inputs of different

sorting. It has been found that our algorithm is better than

the existing sorting algorithm as the rate of growth is much

slower than the other.

Acknowledgment
We would like to thanks Assam down town University,

Guwahati, Assam for helping and supporting us to carry on

this research.

References
[1] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data

Structures using C and C++, Pearson Prentice Hall, 2007,pp 355-358.

[2] Owen Astrachan. Bubble Sort: An Archaeological Algorithmic
Analysis. SIGCSE 2003 Hannan Akhtar. Available at:
http://www.cs.duke.edu/~ola/papers/bubble.pdf.

[3] Robert Sedgewick, Algorithms, Addison-Wesley 1983 (chapter 8 p.
95)

[4] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp 381-382.

[5] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp 367-368.

[6] S.K. Srivastava, Deepali Srivastava, Data Structures through C in
depth, BPB publication, 2011, pp 421- 424.

[7] T.H.Cormen , C.E.Leiserson, R.L.Rivest, C Stein, Introduction to
Algorithms, 2nd ed.,PHI,pp 145-148.

[8] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp 358-364.

[9] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Fundamentals
of Computer Algorithms, Uiversities Press, 2009, pp 159-167.

[10] S.K. Srivastava, Deepali Srivastava, Data Structures through C in
depth, BPB publication, 2011, pp 434-444.

[11] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp403-405.

[12] S.K. Srivastava, Deepali Srivastava, Data Structures through C in
depth, BPB publication, 2011, pp 472-473.

[13] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp 410-413.

[14] S.K. Srivastava, Deepali Srivastava, Data Structures through C in
depth, BPB publication, 2011, pp 473-476.

[15] Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum, Data
Structures using C and C++, Pearson Prentice Hall, 2007,pp 202-207.

About Authors(s):

 Mriganka

B.Tech IT from Sikkim Manipal University in
2008. M.Tech IT from Sathyabama University in
2011. Assistant Professor at CSE dept. of Assam
down town University since 2012. Research area of
interest is Grid Computing and Artificial
Intelligence.

 Rohen

B.Tech CSE from Maharastra Institute of
Technology in 2009. M.Tech IT from Tezpur
University in 2012. Assistant Professor at CSE
dept. of Assam down town University since 2012.
Research area of interest is Algorithms and Social
Networking.

50
600

1150
1700
2250
2800
3350
3900
4450
5000
5550
6100
6650
7200
7750
8300
8850
9400
9950

10500
11050
11600
12150
12700
13250
13800
14350
14900
15450
16000
16550
17100
17650
18200
18750
19300
19850

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

n
u

m
b

e
r

o
f

co
m

p
ar

is
o

n
s

number of elements

Quick Sort

Merge Sort

Bubble Sort

Insertion Sort

Rapid Sort

Figure 1: number of comparisons vs number of elements

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

