
13

Performance Prediction Approaches for

Component-based Systems

Monika Kalotra, Kuljit Kaur

Abstract: Performance predictions of component

assemblies and obtaining performance properties from

these predictions are a crucial success factor for

component based systems. The number of methods and

tools has been developed that analyze the performance

of software systems. These methods and tools aim at

helping software engineers by providing them with the

capability to understand design trade-offs and optimize

their design by identifying performance or predict a

systems performance within a specified deployment

environment. In this paper, we establish a basis to select

an appropriate prediction method and to provide

recommendations for future research, which could

improve the performance prediction of component-

based systems.

 Keywords: Component-based system, quantitative

approach, Performance, Prediction.

I. INTRODUCTION

Component-Based System is an approach to build

applications from deployed components. Developing

software applications using CBS has many

advantages like the efficiency, reliability.

Performance is an important factor that must be

considered [1]. Performance is referring to how

extend the component has satisfied the predefined

requirements of specific factors. The failure of

performance means increased expenses of hardware

and software development. So, the best solution is to

avoid the late evaluation of performance. The

German police has been developed a system called

"Impol-Neu”, that proves the importance of

performance evaluation before deployment, which

was published in mass media [2]. After development

the performance of this system was evaluated. So, the

resulted performance did not satisfied performance or

user requirements. For that reason, they failed to

implement the system in spring 2001 as it planned;

instead the system was implemented in 18th August

2003. Consequently, performance is a key success

 Monika Kalotra, Guru Nanak Dev University

Amritsar, India

Kuljit Kaur, Assistant Professor, GNDU,

Amritsar, Punjab

factor in software production. To develop predictable

software system, the performance should be

addressed early at development stage with minimal

performance problem otherwise it will impact the

cost, schedule, and quality of the software [15].

Therefore, this paper presents a survey of the

proposed approaches to help selecting an appropriate

approach for a given software system.

A. Factors Influencing Component

Performance

a) Component implementation: Component

developers can implement the functionality in

different ways that specified by an interface.

b) Required services: The total execution time of a

component service depends on the execution time of

required services.

c) Deployment platform: Different software

architects deploy a software component to different

platforms.

d) Usage profile: Clients can invoke component

services with different input parameters. Depending

on the values of the input parameters the execution

time of a service can change.

e) Resource contention: A software component on a

given platform does not execute as a single process in

isolation. The induced waiting times for accessing

limited resources add up to the execution time of a

software component.
III. MAIN APPROACHES TO

PERFORMANCE PREDICTION

The main objective of software performance

prediction is to improve the performance of software.

We are using the quantitative approach in this paper.

Three types of approaches are resulted from the

proposed study are:

A. Measurement Approach

Measurement approach refers to a software

performance engineering aims to evaluate software

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

14

application focusing on the quality attributes of

performance such as response time and throughput.

These features are examined using special analysis

tools which enable the monitoring of execution. The

approach could be efficiently used for implemented

application or application with known features. The

approach uses existing systems to measure

performance properties and adjust performance

models with the results. Performance analysts may

use the models to analyze the results of changed

workloads or the use of faster hardware with low

effort which uses test-cases to adjust measurement

from reused components [5].

 In [4] a discussion is given about how the properties

of component-based system may influence the

selection of methods and tools used to obtain and

analyze performance measures. Then, a method is

proposed for the measurement of performance

distinguishing between application-specific metrics

and platform-specific metrics. The automation of the

process of gathering and analyzing data for these

performance metrics is also discussed.

Recently Jiang [14] has proposed measurement

approaches based on testing validation to ensure the

quality of system that composed from black-box

components. The approach uses the previous testing

information of reused component to help in reducing

the effort of testing.

The drawbacks of this approach, is only suitable for

already implemented systems and there is need to

introduce the application, to enable the analysis of

changed workloads.

B. Model Based Approach
Generally, model-based approaches depend on the

Model Driven Development (MDD) technique which

enables developer to efficiently evaluate and assess

the system requirements and execution by using a set

of models. In addition having good input models and

accurate analysis models, performance prediction for

component-based systems adds an additional level of

complexity by the introduction of the development

roles. The information needed for conducting a

performance evaluation is spread among the

developer roles [8]. The component developer knows

for example how the component is realized while the

software architect knows how to assemble the

components of the system. The influencing factors

are also considered while dealing with performance

of component based system

Becker et al. (2006) surveyed existing Component

based performance prediction methods including a

discussion on the support for parameterized

component performance models.

I. RESOLVE-P: Sitaraman et al. (2001) take the

usage of the components into their predictions by

using an extended Big-O Notations to specify the

time and memory consumption of software

components that depending on the input parameters

passed to service calls. The composing services are

supported on an abstract level by composing the

specified Big-O demands [17]. RESOLVE specifies

the functionality of a component with a list of service

signatures and also pre and post condition for each

service. According to authors they point out the

limitations of classical big-O notations for generic

software components with polymorphic data types.

Therefore, they increase the functional RESOLVE

specifications with an adapted big-O notation for

execution time and memory consumption. The

specification does not distinguish between different

processing resource (e.g., CPU and hard disk), does

not include calls to required services, and passive

resources. This approach targets a fundamental

theory of performance specification and do not deal

with prediction or measurement frameworks.

II. PACT: (Hissam et al. (2002)) gave a

conceptual framework so called Predictable

Assembly or Prediction Enabled Component

Technology. The assembly consists of certified

components whose properties are combined

according to a composition theory. The framework

takes component properties and their assembly into

account [3]. It is only a conceptual framework it

depends on the actual method used. CCL

(Component constructive Language) is used for

architectural description. It supports synchronous and

asynchronous communication with required services.

CCL allows by specifying component behaviour with

state charts. Resource demands are attached to the

CCL components using annotations. CCL supports

composite components but not memory consumption.

For analysis, tools transform CCL models into

intermediate constructive model, which focuses on

the relevant part for performance analysis and helps

in the implementation of further transformations.

PECT mainly targets analyzing real-time properties

of component-based embedded systems.

III. CB-SPE: (Smith and Williams 2002)

Software Performance Engineering is a method that

focuses on software performance early in the

software development life cycle. To evaluate designs

it uses quantitative methods. SPE also provides

patterns, models, and advices to help performance

engineering. SPE is used throughout the life cycle

phases, to predict and to manage software

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

15

performance [6]. The CB-SPE approach by Bertolino

and Mirandola uses UML extended with the SPT

profile as design model and queuing networks as

analysis model. The modelling approach is divided

into a component layer and an application layer [14].

On the component layer, developers model the

schedulable resource demands of individual

performance services in dependence to environment

parameters. In the application layer, software

architects pre-select components performance models

and compose them into architecture models.

Bertolino and Mirandola (2004) apply the SPE

method to component-based systems by separating

component performance models and assembly

models. With this, the external service calls and the

execution environment become parameterized.

However, the software architect has to specify a

performance critical scenario to the SPE method. As

he should not posses’ information on the component

internals, this is a drawback of the method. Further,

this method does not take input parameters into

account.

IV. CBML: Wu and Woodside (2004) to build the

parameterized component models use LQN models

of components. LQNs model the behaviour and

resource demands of software entities with so-called

`tasks'. Resource demands are specified as mean

values of exponential distribution functions, but there

is no support for memory consumption. For each

component an LQN model specifying it’s provided

and required interfaces as well as the control flow

and resource usage dependencies. These single

component LQN models are combined according to

an assembly model into a system LQN model which

gets evaluated [13]. Wu and Woodside (2004) also

consider inserting components which they call

completions (Woodside et al., 2002) for

environmental services like middleware services into

the system model automatically to increase the

prediction accuracy of the environmental influence.

To define CBML components there is an XML

schema, but there are no graphical editors for CBML

models.

V. CB-APPEAR: Eskenazi et al. (2004) present a

method for the performance prediction of existing

components which undergo evolution. A parametric

performance model is derived for these components

by putting them into a test bed which figures the

dependencies between method invocations and

invocations of environmental services out.

Depending on the complexity of the parametric

dependency, the resulting model is either analytical

or simulation based. However, the approach makes

strong assumptions which are necessary to derive the

performance models by testing [7].

VI. Hamlet: Hamlet et al. (2004) this approach

comes from the area of software testing. It was first

proposed for reliability prediction of component-

based systems, and later extended for performance

prediction. The authors use a restricted component

definition to reduce the complexity of software

composition. A software component is a

mathematical function with input single integer

value. Component composition of two software

components means that the first component sends all

its outputs to the second component in a pipe-and-

filter style. This method requires component

specification by component developers and

performance prediction by software architects. This

approach executes the components and measure how

the component usage requests moves in orders to

gain accurate performance predictions. However,

their component model is limited as in their model

components are simple functional transformations

having only a single service. The approach does not

consider concurrency or scheduling [13]. However, it

considers the influence of the internal state of

components to performance in a restricted form. This

approach assumes a very restricted class of

components, no validation on an industrial system.

VII. ROBOCOP: Bondarev et al. (2005)

introduce a prediction method for embedded systems

designed using ROBOCOP. This method can deal

with implementation details specified by the

component developer parameterized by external

services, the component’s hardware environment, and

usage. However, due to its focus on embedded

systems, the support for parameterizations is limited.

ROBOCOP components contain a resource

specification and a behavioral specification as well as

the executable implementation of the component.

Component developers specify ROBOCOP

components in a parameterized way. Software

architects compose these specifications and the

parameters instantiate by the component developers.

Scheduled resource demands of software components

are constants in ROBOCOP [13], which also allows

limited resource demands for semaphores and

memory. The so-called Real-Time Integration

Environment, which is implemented as a number of

Eclipse plugins, supports the whole design and

performance prediction process with ROBOCOP.

The Support for software layers like operating

systems or middleware platforms is outside the scope

of this work and the Composite components are also

not supported.

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

16

VIII. KLAPER: Grassi et al (2007) this method

for performance prediction of component-based

software systems is so-called kernel modelling

language called KLAPER. The language is

implemented in MOF (Meta Object Facility) and

aims at helping the implementation of model

transformations from different kinds of component

system models (e.g., UML) into different kind of

performance models (e.g., qeueuing networks). With

KLAPER, it shall be possible to combine component

performance models by different component

developers based on different notations in a single

prediction. There is no support for composite

components. The language includes scheduled and

limited resource demands as well as control flow.

The authors implemented QVT transformations from

KLAPER to EQNs and Markov chains. Because this

is only be used by model transformations, no

graphical modelling tools. The language is able to

model dynamic software architectures where the

connectors between components can change at

runtime [11].

IX. Palladio Component Model (PCM):

(Becker et al., 2009) PCM is a domain specific

modeling language to describe component-based

software architectures. Its major aim is to enable

performance predictions for software architectures at

design time. PCM is a dedicated component-based

software development process, which distinguishes

between the four roles of developers, architects,

deployers, and domain experts. Each role has a

limited view on the entire system model and

contributes within its responsibility only specific

parts to this holistic model. Becker et al. (2007)[15]

enhance the model further by introducing a new

SEFF concept called Resource Demanding SEFF

(RD-SEFF) considering parametric dependencies to

input Parameter and the execution environment. For

this, an extension to the PCM’s meta-model

introduced so called stochastic expressions.

Component developers can use them for example to

specify resource demands depending on input

parameters. Thus, it introduces a model-based

simulation tool for predictions. Based on this,

Koziolek et al. have added additional concepts to

specify return value abstractions for external calls

and component configuration parameters.

Additionally, the authors introduce a model-driven

approach to derive an analytical performance

prediction model using model-2-model

transformations [13]. The PCM-Bench tool allows

independent graphical modelling for all four

developer roles. Further model transformations map

the whole model into performance models, which are

solved by simulation or numerical analysis.

C. Mixed Approach
Mixed approaches are based on the group of

measurement and model-based approaches. The

mixed approach assumed to benefit from the

strengths and avoids the weaknesses of the two

approaches. These approaches mainly focusing on

component specification that support the runtime

performance information on software components

and software application execution environment.

In [9] a methodology is presented, which aims for

predicting the performance of component in

distributed systems both during development. The

methodology combines monitoring, modelling and

performance prediction. UML models are created

dynamically with non-intrusive methods based on

performance prediction models. The application

performance is then predicted by generating

workloads and simulating the performance models.

In [10] an approach to predict the performance of

component-based applications during the design

phase is presented. The proposed methodology

derives a quantitative performance model for a given

application from the mentioned component platform.

The results obtained for an EJB application are

validated with measurements of different

implementations. Using this methodology, it is

possible for the software architect to make early

decisions between application architectures in terms

of their performance and scalability.

IV. PERFORMANCE MODELS

A performance model is an abstract representation of

a real system that captures its performance properties,

which are related to the quantitative use of resources

during runtime behaviour and it is capable of

reproducing its performance. The model can be used

to study the performance of different designs. The

evaluation of the performance model is done by

analytical methods or by simulating the model.

A. Layered Queuing Network Modeling
In queuing networks, queues and their service

represent processing resources which process work

jobs queuing for service. Jobs travel through a

network of service centers using probabilistic routes.

The result of a qeueuing network analysis gives the

average response time of the overall system, waiting

times for queues, average queue length, and server

utilization. For this, the class of queuing networks

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

17

exists which can be solved by iterative methods like

the Mean-Value-Analysis. The complexity of a

queuing network depends on the characteristics of the

service centre’s and the assumptions on the jobs. For

networks where arrival rates and service times are

generally distributed, no analytical solution is known.

The only known methods apply simulation

techniques [6].

B. Stochastic Process Algebras
Based on process algebras developed by Milner,

extensions for performance prediction exist which

introduce stochastic time demands for the actions of

the algebra. The advantage of using process algebra

is the possibility to specify the behavior of the

processes. Compared to queuing networks where the

routes of the jobs in the network are usually

probabilistic, the processes of process algebra behave

according to the semantics of the algebra. This also

allows formal analysis of additional system

properties like deadlock freedom [6]. For an analysis,

the process specifications are transformed into

Markov chains exploiting the memory less property

of the exponential distribution. Models based on

general distributions cannot be solved analytically

resulting in a need for a simulation based evaluation

tool.

C. Stochastic Petri-Nets
Enhancements exist for Petri-nets as introduced by

Petri which enable performance predictions based on

Petri-net models. A Petri-net consists of a set of

places and transitions, which are traversed by tokens.

Transitions remove and add tokens on places

whenever they fire [15, 6]. Transitions are active

whenever more tokens are on all places affected by

the transition as required by the transition’s

specification. Among all active transitions one is

selected to fire resulting in the final change of the

Petri-net’s state. Stochastic enhancements add

exponential distributed activation times to transitions

which specify a minimum time which has to pass at

least for the transition to fire again. Additionally,

probabilistic routing of the tokens can be specified.

Stochastic Petri nets have exact mathematical

definition of their execution semantics. It’s very hard

to understand these mathematical equations so that’s

why the scope is limited.

TABLE 1
Comparisons of Performance Prediction Approaches

V. CONCLUSION

In this paper, we have reviewed performance

prediction approaches for component based software

systems. The area of performance for component-

based software engineering has significantly matured

over the last decade. By predicting the performance

of component based system, the throughput, resource

utilization and the response time of the component

running on them could also be enhanced to a great

extent. Also, there is a great scope of research in this

field for performance in component based software

system is one of most important issues related with

this field.

REFERENCES
[1] IEEE, Standard Glossary of software engineering tech. 1991.

[2] Chessman, J.,UML Components: A Simple Process for

Specifying Component-based Software. Addison-Wesley,2000.
[3] Hissam, S.A., Packaging Predictable Assembly, ACM

Conference, Berlin, Germany, June 2002, Springer.

[4] Chastek, and S. Yacoub, Performance Analysis of Component-

Based Applications, in Springer 2002, Berlin.

 [5] Lloyd G. Williams, Connie U. Smith, Making the business

case for software performance engineering, in: CMG, 2003.
[6]. Balsamo, S., Marzolla, M.: A Simulation-Based Approach to

Software Performance Modeling. In: ESEC/FSE-11,2003,ACM

[7]. Eskenazi, A.V., Obbink, H., Pronk, B.: Analysis and
Prediction of Performance for Evolving Arch. IEEE, 2004, France.
[8]. Eskenazi, Hammer, D.K., Obbink, H., Pronk, B.: Analysis and

Prediction of Performance for Evolving Architectures. In IEEE,
ed.: Proceedings of the 30th EUROMICRO Conference 2004.

[9]. Diaconescu, A., Murphy, J.: Automatic Performance

Management in Component Based Software Systems. In IEEE, 1st
International Conference on Autonomic Computing May 2004.

 [10]. Liu, Y., Fekete, Predicting the Performance of Middleware-

Based Applications at the Design Level. In: Proceedings of the 4th
International Workshop on Software and Performance, 2004.

[11] Vicenza Grassi, “A kernel language for performance analysis

of CBS”, 5th International conf on Software, ACM 2005.

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

18

 [12] Steffen Becker, Heiko Koziolek, “Model-based Performance

Prediction with the Palladio Component Model,” 2007, ACM.

[13] Koziolek, H., Performance evaluation of component-

based systems: A survey. Performance Evaluation,2009.
[14] Jiang, Y., et al. Extended software component model for
testing and reuse. 2010. China: IEEE Computer Society.

[15] Cortellessa, V., nverardi, P. Model-Based Software

Performance Analysis. Springer, 2011.

I, Monika Kalotra doing M.tech from Guru Nanak Dev University
Amritsar. Punjab.

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 3 [ISSN 2250-3765]

Publication Date : 30 September,2014

