
1

Effect of End Sections in Speech Recognition
Diganta Baishya

1
 and Pradip K. Das

2

Abstract - The speech recognition process involves human-

machine communication via human voice. This complex process

involves understanding and differentiating the basic

characteristics of speech. Lot of work has been done in this

regard, but we are yet to have a system with hundred percent

recognition rate thus limiting uses of such a system only to non-

critical applications. The task is to recognize the human voice

sent to the machine via a communication media. The paper

discusses some works done in the area of speech recognition. All

speech recognition algorithms consider specific characteristics of

speech signal resulting into better recognition rate in the recent

years. However people are still looking into different aspects of

speech signal to improve their rates. We focus on an aspect that is

not studied much yet. The paper reports experiments conducted

to verify whether the position of a word in a sentence influences

the recognition rate, and if so, how and what can be done to

utilize this effect to improve it. Experiments are conducted

placing a word in various positions of a continuously spoken set

of words to check the recognition rate. It was observed that the

word when placed at the last position of a sequence usually

improves the recognition rate. It was interesting to observe that

chances of a word being interpreted correctly depend heavily on

the phonetic structure towards the end. The observation can be

crucial to improvement of the existing algorithms used in speech

recognition.

Keywords - Continuous Speech, HTK, Word Position,

Recognition Rate, Viterbi

I. Introduction
Speech recognition process involves human to machine

communication via voice signal. In recent years, ability to
handle human voice by using technology has undergone a
major revolution. Applications and software that are
developed to control devices like mobile phones, televisions
and computers including laptops to desktops of all sizes are in
high demand. Speech recognition systems are now available in
most popular languages of the world like English, French,
German, Chinese, etc. with accuracy around 90-95% that are
capable of recognizing 100-150 words per minute. Even
though most of these applications perform well, they are not
suitable for real time and critical applications where the
margin of error allowed is low. People are still working to
improve upon it for more accurate results and to reduce run
time cost. This effort has resulted into numerous algorithms.

In his book [1], S. Young states that a speech recognition

system assumes the speech signal to be some sequence of

messages encoded in the form of some symbols.

1. Diganta Baishya

Dept. of CSE, IIT Guwahati, Assam, INDIA

2. Pradip K. Das

Dept. of CSE, IIT Guwahati, Assam, INDIA

Hence the speech signal is first converted to equally space
discrete parameter vectors, which is assumed to be an exact
representation of the speech wave. Any recognizer aims at
best possible mapping between speech vectors and symbol
sequence. Different symbols may produce similar sounds and
they vary a lot speaker-wise which makes the recognition
process a difficult task. The other main issue is to recognize
the word boundary which is very difficult because of
underlying noise. Word boundary is not at all an issue in case
of isolated word recognition but in case of continuous word
recognition it creates a big challenge.

II. Foundation
Token passing version of Viterbi algorithm [2] views

speech recognition as a process of passing tokens around a
transition network. In this algorithm, a token is passed from
one state to all its neighbouring states in the transition network
carrying some probability. The receiving node discards all but
the token with the highest probability. The actual path
traversed can be retrieved working backwards from the final
state node at the end. This algorithm is the basis of the
recognition process used in the HTK software.

“CarpeDiem” [3] reduces the transition network for the
best path search. To determine the end point of the best path to
any layer, we need not inspect all vertices in that layer. The
algorithm is based on the concept that “After sorting the
vertices in layer t according to their vertical weight, the search
can be stopped when the difference in vertical weight of the
best node so far and the next vertex in the ordering is big
enough to counterbalance any advantage that can be possibly
derived from exploiting a better transition and/or a better
ancestor”. This obviously reduces the time taken for search.
The running time of an execution of CarpeDiem depends on
how the weights of vertical and horizontal features compare:
The more discriminative are vertical features with respect to
horizontal features, the larger is the edge CarpeDiem has over
the Viterbi algorithm.

J Joddel and his colleagues [7] have shown light on
reducing the size of the transition network so that the Viterbi
algorithm used for recognition needs less amount of time for
processing. They also inferred that uncertainty is higher at the
beginning of a word than at the end. Hence, using a single
fixed beam throughout the word is not a very good idea. It
allows one to think of using a word-end beam towards the end
of a word for reducing computation. The paper advocates tree
structuring the network so that the search time can be
improved due to the fact that words sharing the common
phonemes at the beginning can share the same model
instances, thus reducing the size of the network.

Experiments based on the Viterbi algorithm for ASR with
continuous-density HMMs has shown that even if the isolated
recognition result is [10] very good, the results for connected
digit recognition was poor. However, the important

International Journal of Artificial Intelligence and Neural Networks – IJAINN
 Volume 4 : Issue 3 [ISSN 2250 – 3749]

Publication Date : 30 September, 2014

2

observation they made was that the last digit in the connected
sequence was never missed and was perfectly recognized.

The experiments discussed in this paper are based on
recognizers developed using the HTK toolkit. A detailed study
about the behaviour of the recognizer and the paper published
by Rob Oxspring and Mark Greenwood [10] motivated to
concentrate on an area which is not explored much.

III. Experiment and Observations
Experiments were conducted to test whether the position of

a word can influence its recognition rate. The recognizer was
built using HTK and the results found are illustrated below.
Crucial observations made thereafter are also listed.

A. Recordings
All the recordings are done with a sampling rate of 16000

Hz, 16 bits/sample and with mono channel using the HSLAB
utility of HMM Toolkit (HTK). For experiments, minimum
ten utterances (a total of 327 utterances) of ten isolated
English digits were recorded. The list of digits along with their
respective phonetic representation is tabulated below. All
recordings are done by a single speaker.

TABLE I. DIGITS WITH THEIR PHONETIC TRANSCRIPTIONS

1. EIGHT ey t 7. FIVE f ay v

2. FOUR f ao 8. FOUR f ao r

3. NINE n ay n 9. ONE w ah n

4. SEVEN s eh v n 10. SIX s ih k s

5. THREE th r iy 11. TWO t uw

6. ZERO z ia r ow

.

B. The Recognizer
The recognizer to recognize the ten digits was built using

the HTK toolkit. The steps followed to design the recognizer
are briefly stated in the Appendix.

C. The Algorithms
HTK uses a variation of Viterbi Algorithm for recognition.

The Viterbi Algorithm is reproduced below [12]:

Initialization (i=0):
vo(0) =1, vk(0) =0 for k>0

vo(0) =1, vk(0) = -lnf for k>0

Recursion(i=1…L):
vl(i) = el(xi) max k(vk(i-1)akl)

ptri(l) = argmaxk(vk(i-1)akl)

vl(i) = el(xi) + maxk(vk(i-1)+akl)
ptri(l) = argmaxk(vk(i-1)+akl)

Termination:

P(x, z*)= maxk(vk(L)ako)
 z*L = argmaxk(vk(L)ako)

P(x,z*) = maxk(vk(L)+ako)

 z*L = argmaxk(vk(L)+ako)

Trace back (i=L….1): z i-1
=ptri(i)

The above Algorithm computes the maximum probable
state sequence recursively that may throw the observed
sequence vectors. But HTK uses a modification of Viterbi

Algorithm called Token Passing version of Viterbi Algorithm.
It may be stated as follows [13]:

The Token Propagation component uses the following steps:

D. Experiment
Sentences each containing five words were constructed

from ten digits so that each digit can be tested at first, mid and
last position. The results were observed using “hvite” utility of
HTK. Words were spoken very slowly to observe the results
using isolated word recognition. Then as we speak the
sentences, speed was increased and the recognition rate for
continuous recognition was verified.

E. Results
1) Isolated Word Recognition

The recognizer was tested by the speaker for all the digits
in an isolated manner. All digits were recognized with 100%
accuracy.

2) Connected Word Recognition

The recognizer was evaluated with the digits tested at
different positions of the digit sequence using the digit strings
as given in Table II.

Each Table and Graph below shows the comparative
results of each digit being placed in first, mid and end position
of sentences respectively.

Initialization (t=0)

 Initialize each initial state to hold a token with s = 0

 All other states are initialized with a token of score s = −∞

Algorithm (t>0):
 Propagate tokens to all possible “next” states
 Prune tokens whose path scores fall below a search beam
Termination (t=T):

Examine the tokens in all possible final states and find the token with
the largest Viterbi path score.

 This is the probability of the most likely state alignment
TraceBack:

At each word boundary, track the recognized word in the list of words
detected so far.

Token Propagation:

for t := 1 to T

 for each state i, do

Pass token copy in state i to all connecting states j, incrementing s
end

for each state i, do

Find the token in state i with the largest s and discard the rest of
the tokens in state i. (Viterbi Search)

end

end

International Journal of Artificial Intelligence and Neural Networks – IJAINN
 Volume 4 : Issue 3 [ISSN 2250 – 3749]

Publication Date : 30 September, 2014

3

TABLE II. DIGIT STRINGS USED FOR TESTING

TABLE III. DIGIT RECOGNITION RESULT AT EACH POSITION

D
ig

it First Second Third Fourth Fifth

Corr
ect

Tota
l

Corr
ect

Tota
l

Corr
ect

Tota
l

Corr
ect

Tota
l

Corr
ect

Tot
al

0 11 24 5 21 11 48 7 20 28 37

1 13 24 24 56 13 26 16 43 25 26

2 21 37 17 24 17 26 20 25 41 41

3 17 29 3 17 30 44 66 79 44 49

4 25 43 30 46 18 24 13 21 25 25

5 18 53 10 26 22 26 13 29 37 44

6 21 25 16 20 27 41 39 48 26 26

7 10 26 8 25 11 37 10 20 18 24

8 14 26 31 70 8 27 6 17 24 29

9 27 41 20 23 20 29 9 26 27 27

Total 177 328 164 328 177 328 199 328 295 328

TABLE IV. PERCENT RECOGNITION ACCURACY OF DIGITS AT FIRST, MID

AND END POSITIONS

 Position

Digits
First Mid End

ZERO 45.83 25.84 75.68

ONE 54.17 42.40 96.15

TWO 56.76 72.00 100.00

THREE 58.62 70.71 89.80

FOUR 58.14 67.03 100.00

FIVE 33.96 55.56 84.09

SIX 84.00 75.23 100.00

SEVEN 38.46 35.37 75.00

EIGHT 53.85 39.47 82.76

NINE 65.85 62.82 100.00

Figure 1. Recognition results for digits at first, mid and end positions.

Figure 2. Performance graph of recognition accuracy for digits at start, mid

and end positions.

F. Observations and inferences
HTK works considerably well for speech recognition.

However there is scope of further improvement. In the
experiment, the sequences of words were tested by
pronouncing very slow initially and then increasing speed.
Even though the recognition is 100% for the slow
pronunciation, it goes down when the speed is increased. From
the above Tables and Figures it is very much evident that the
recognition rate is found to be better when the digit is at the
last position of a continuously speaking sequence of digits
when spoken fast. This leads to some questions:

a. Do we speak the last word of a sentence more carefully?

b. Does the last word spoken is not influenced much by the
adjacent word (which is only the preceding word) in
comparison to a word in middle of a sentence which is
influenced by both its successor and predecessor?

c. Does the Viterbi algorithm perform better in HTK for the
last word?

Considering the fact that the last word is pronounced
better, this feature may be used to improve the performance of
the system and also the last word of a sentence can be used as
the key word for some command-based applications. Even
one can think of improving the recognition rate for any kind of

0

10

20

30

40

50

60

70

80

90

100

ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE

P
e

rc
e

n
ta

ge
 A

cc
u

ra
cy

Digits

Start Mid End

0

10

20

30

40

50

60

70

80

90

100

ZERO ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE

P
e

rc
e

n
ta

ge
 A

cc
u

ra
cy

Digits

Start Mid End

1. TWO FOUR SIX SEVEN ZERO

2. SIX SEVEN ZERO TWO FOUR

3. ZERO TWO FOUR SIX SEVEN

4. FOUR SIX SEVEN ZERO TWO

5. SEVEN EIGHT FIVE THREE SIX

6. THREE ONE NINE FIVE EIGHT

7. EIGHT FIVE ONE NINE THREE

8. FIVE ONE EIGHT THREE NINE

9. NINE EIGHT THREE ONE FIVE

10. ONE EIGHT THREE SIX FIVE

11. FIVE FOUR TWO THREE ONE

International Journal of Artificial Intelligence and Neural Networks – IJAINN
 Volume 4 : Issue 3 [ISSN 2250 – 3749]

Publication Date : 30 September, 2014

4

recognizer. The best will be to reach the end section of a
sentence to identify the last word, and then use this
information to help searching the best likely word sequence.
This method promises to make the searching easy and less
time consuming but will require an additional pass to
recognize the last digit initially. This may be computed in
parallel and the information may be used as a hint in the mid
of the original search process for a connected word recognizer.

IV. Conclusions and Future work
In this paper we have presented how the position of a word

influences the recognition rate in a continuous sentence and
the way we can think of improving the recognition rate using
these characteristics. The experiment was based on the
significance of the last word. Since the last word is found to be
very accurate, we may use it to make the system more accurate
with some modifications to the algorithm. Following are the
areas that may be focused next:

We may think of designing the commands such that the
commands may be implemented as the last word of a sentence.

The recognition algorithm may start with the last word and
use this information to reduce the search network which will
reduce the size of search network in Viterbi algorithm thus
reducing computation time.

Even the recognition process may be initiated in parallel
from both directions to reduce the time taken.

V. APPENDIX
Step1: Hparsegram wdnet

Input: The file “gram”. It contains the following text:

$digit = ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|ZERO;
(SENT-START<$digit>SENT-END)

Output: wdnet contains the definition of search network of words to be used

for recognition

Step2:HDMan -m -w wlist -n monophones1 -l dlogdict names

Input: wlist, names
Output: monophones1, dlog, dict

Step3: HSgen -l -n 30 wdnetdict>trainprompts

Input: wdnet, dict

Output: trainprompts containing utterances to be trained

Step4: HLEd -l '*' -d dict -i phones0.mlf mkphones0.led train.mlf

Input: dict, mkphones0.led, train.mlf

Output: phones0.mlf

Step5: HCopy -T 1 -C cfg_mfc -S code_mfc.scp

Input: cfg_mfc, code_mfc.scp, Wav files
Output: Corresponding MFC Files

code_mfc.scp contains input directory for wav files and output directory for

mfc files

Step6.1: HCompV -C config -f 0.01 -m -S tr_mfc_mono.scp -M hmm0 proto

Input: config, tr_mfc_mono.scp, proto, empty directory “hmm0”
Output: ”macro” and “hmmdefs” in “hmm0”

Step6_2: herest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S

tr_mfc_mono.scp -H hmm0\macros -H hmm0\hmmdefs -M hmm1

monophones0

herest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S tr_mfc_mono.scp -H
hmm1\macros -H hmm1\hmmdefs -M hmm2 monophones0

herest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S tr_mfc_mono.scp -H

hmm2\macros -H hmm2\hmmdefs -M hmm3 monophones0

Input: config, phones0.mlf, tr_mfc_mono.scp,hmm0, empty folders “hmm1”,

hmm2” and “hmm3”

Output: “macro” and “hmmdefs” in “hmm1”, hmm2” and “hmm3”

Step6_3: hhed -H hmm4\macros -H hmm4\hmmdefs -M hmm5 sil.hed

monophones1
herest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S tr_mfc_mono.scp -H

hmm5\macros -H hmm5\hmmdefs -M hmm6 monophones1

herest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S tr_mfc_mono.scp -H
hmm6\macros -H hmm6\hmmdefs -M hmm7 monophones1

Input: empty directories “hmm5”, “hmm6” & “hmm7” and hmm4 containing

files from hmm3 adding parameters for silence model
Output: Output: “macro” and “hmmdefs” in “hmm5”,“hmm6” and “hmm7”

Step6_4: HVite -l * -o swt -b SENT-END -C config -a -H hmm7/macros -H
hmm7/hmmdefs -ialigned.mlf -m -t 250.0 -y lab -I train.mlf -S

tr_mfc_mono.scpdict, monophones1

Input: hmm7, config, train.mlf, tr_mfc_mono.scp, dict, monophones1
Output: aligned.mlf

Step6_5: herest -C config -I aligned.mlf -t 250.0 150.0 1000.0 -S
tr_mfc_mono.scp -H hmm7\macros -H hmm7\hmmdefs -M hmm8

monophones1

herest -C config -I aligned.mlf -t 250.0 150.0 1000.0 -S tr_mfc_mono.scp -H
hmm8\macros -H hmm8\hmmdefs -M hmm9 monophones1

Input: config, aligned.mlf, tr_mfc_mono.scp, hmm7, empty directories hmm8
and hmm9

Output: “macro” and “hmmdefs” in “hmm8”,“hmm9”

Step7_1: HLED -n op\triphones1 -l '*' -i op\wintri.mlfmktri.ledaligned.mlf

Input: mktri.led and aligned.mlf

Output: triphones1 and wintri.mlf

Step7_2: HHEd -B -H hmm9/macros -H hmm9/hmmdefs -M hmm10
mktri.hed monophones1

Input: hmm9, Empty directory “hmm10”, mktri.hed and monophones1

Output: “macro” and “hmmdefs” in “hmm10”

Step7_3: herest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S

tr_mfc_mono.scp -H hmm10\macros -H hmm10\hmmdefs -M hmm11
triphones1

herest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S

tr_mfc_mono.scp -H hmm11\macros -H hmm11\hmmdefs -M hmm12
triphones1

herest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S

tr_mfc_mono.scp -H hmm12\macros -H hmm12\hmmdefs -M hmm13
triphones1

Input: config, wintri.mlf, tr_mfc_mono.scp, ”hmm10”,empty directories

”hmm11”, ”hmm12” and ”hmm13”
Output: “macro” and “hmmdefs” in “hmm13”

Step7_4: HVite -H hmm13/macros -H hmm13/hmmdefs -C config2 -w wdnet
-p 0.0 -s 5.0 dict triphones1

Input: hmm13, config2, wdnet, dict and triphones1

Output: Recognition Result

VI. REFERENCES
[1] Steve Young, Gunnar Evermann, Dan Kershaw, Gareth Moore, Julian

Odell, Dave Ollason,Valtcho Valtchev and Phil Woodland :The “HTK

Book” (for HTK Version 3.1), Cambridge University Engineering
Department, December 2001.

[2] S J Young, N H Russel and J H S Thornton, “Token Passing-a simple

Conceptual Model for Connected Speech Recognition Systems”,
Cambridge University Engineering Department Technical Report, Tech.

Report No 38, July 31, 1989.

[3] Roberto Esposito and Daniele P. Radicioni, “CarpeDiem: Optimizing
the Viterbi Algorithm and Applications to Supervised Sequential

International Journal of Artificial Intelligence and Neural Networks – IJAINN
 Volume 4 : Issue 3 [ISSN 2250 – 3749]

Publication Date : 30 September, 2014

5

Learning” published in Journal of Machine Learning Research in August

2009, pp. 1851-1880.

[4] Mohit Dua, R.K.Aggarwal, Virender Kadyan and Shelza Dua,“Punjabi

Automatic Speech Recognition Using HTK”, published in International

Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012, pp.
359-364.

[5] Preeti Saini, Parneet Kaur and Mohit Dua, “Hindi Automatic Speech

Recognition using HTK”, Published in International Journal of
Engineering Trends and Technology (IJETT) –Volume 4 Issue 6, June

2013, pp 2223-2229.

[6] P. Vijai Bhaskar, Prof. Dr. S. Rama Mohan Rao and A.Gopi, “HTK
based Telugu Speech Recognition”, published in International Journal

of Advanced Research in Computer Science and Software Engineering,

December 2012, pp. 307-314.
[7] J Joddel, V Valtchev and S. J Young, “A One Pass Decoder for large

Vocabulary Recognition”, Proceedings of HLT-94 (Workshop on

Human Language Technology), pages 405-410.
[8] K M Knill and S J Young, “Fast Implementation Methods for Viterbi

based Word Spotting”, Published in Proceedings of the Acoustics,

Speech and Signal Processing, 1996, IEEE International Conference -
Volume 0, Pages 522-525.

[9] Shay Mozes, Oren Weimann and Michal Ziv-Ukelson, “Speeding Up

HMM Decoding and Training by Exploiting Sequence Repetitions”,
Published in Proceedings of CPM'07 (Proceedings of the 18th Annual

Conference on Combinatorial Pattern Matching, pages 4-15.

[10] Rob Oxspring, Mark Greenwood, “The Viterbi Algorithm for ASR with
Continuous-Density HMMs”, University of Sheffield Technical Report,

available in:
 http://www.dcs.shef.ac.uk/~mark/uni/speech2.pdf

[11] Lilie Mundalifah Roosman, “Phonetic Experiments on the Word and

Sentence Prosody of Betawi Malay and Toba Batak”, Published by LOT,
Netherland, ISBN-10: 90-76864-98-5, ISBN-13: 978-90-76864-98-3.

[12] J Joddel, V Valtchev, Dave Ollason, Phil Woodland, HTK Book (for

Version 2.1), March 1997, available in:
 http://www.ee.columbia.edu/ln/LabROSA/doc/

[13] Prof. Bryan Pellom, “Automatic Speech Recognition: From Theory to

Practice”, Class notes of Department of Computer Science, Centre for
Spoken Language Research, University of Colorado, available in:

http://www.cs.tut.fi/~puhtunn/

About the Author (s):

Diganta Baishya is a final year Graduate student from the Department of

Computer Science & Engineering at IIT Guwahati. He is working on speech

recognition targetted towards real-time implementation on resource contrained
devices.

Pradip K. Das is a faculty member in the Department of Computer Science &
Engineering at IIT Guwahati. His research interests include, Speech

Processing, Man-Machine interfaces, Mobile Robotics, algorithms, etc.

International Journal of Artificial Intelligence and Neural Networks – IJAINN
 Volume 4 : Issue 3 [ISSN 2250 – 3749]

Publication Date : 30 September, 2014

