

6

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 3 [ISSN 2374– 1619]

Publication Date : 30 September, 2014

Demystifying Black Box over White Box Testing
Ruhi Oberoi, Harpreet Oberai, Aniket Ramgiri

Abstract— Within the automated testing world there are

two predominating testing methodologies: black-box and

white-box. This paper seeks to explore the pros and cons of

both approaches and to identify when each approach

should be used to ensure quality applications are delivered

to market. In the end, this paper concludes that while

black-box testing has its drawbacks in the past, innovative

approaches to black-box testing makes it the likely choice

to deal with the ever increasing complexity of applications

and deliver lower Total Cost of Ownership (TCO) and a

better Return on Investment (ROI) to organizations

although it can be used with a degree of white box testing

involved in it.

Keywords— Black Box, White Box, Total Cost of Ownership,

Return of Ownership.

I. Introduction

A. Black-box
This testing methodology looks at what are the available

inputs for an application and what is the expected output. It is
not concerned with the inner workings of the application, the
process that the application undertakes to achieve a particular
output or any other internal aspect of the application that may
be involved in the transformation of an input into an output.
Most black-box testing tools employ either coordinate based
interaction with the applications graphical user interface (GUI)
or image recognition. An example of a black- box system
would be a search engine. You enter text that you want to
search for in the search bar, press “Search” and results are
returned to you. In such a case, you do not know or see the
specific process that is being employed to obtain the search
result. One simply provides an input – a search term – and
receives an output – for the search results. [1]

B. White- box
This testing methodology looks under the cover and into the
subsystem of an application. Whereas black-box testing
concerns itself exclusively with the inputs and outputs of an
application, white-box testing enables you to see what is

Ruhi Oberoi

Assistant Professor, Jawaharlal Nehru Engineering College

Aurangabad, India

Harpreet Oberai

BFSI Practice, Zensar
Pune, India

Aniket Ramgiri

SME, Amdocs

Pune, India

happening inside the application. White-box testing provides a
degree of sophistication that is not available with black -box
testing as the tester is able to refer to and interact with the
objects that comprise an application rather than only having
access to the user interface. An example of a white-box system
would be in-circuit testing where someone is looking at the
interconnections between each component and verifying that
each internal connection is working properly. Another
example from a different field might be an auto-mechanic who
looks at the inner-working of a car to ensure that all of the
individual parts are working correctly to ensure the car drives
properly [2].In white box testing one can be sure that all parts
through the test objects are properly executed. Some
synonyms for white box testing are [5]:

 Design Based Testing

 Open Box Testing

 Transparent Box Testing

 Clear Box Testing

 Glass Box Testing

 Structural Testing

Some important types of white box testing techniques are [5]:

 Control Flow Testing

 Branch Testing

 Path Testing

 Data flow Testing

 Loop Testing

There are some pros & cons of white box testing-

1) Pros
 Side effects are beneficial.

 Errors in hidden codes are revealed.

 Approximate the partitioning done by execution
equivalence.

 Developer carefully gives reason about
implementation.

2) Cons-
 It is very expensive.

 Missed out the cases omitted in the code.

The main difference between black-box and white-box testing
is the areas on which they choose to focus. In simple terms,

7

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 3 [ISSN 2374– 1619]

Publication Date : 30 September, 2014

Figure 1. Working Process for White Box Testing

black-box testing is focused on results. If an action is taken
and it produces the desired result then the process that was
actually used to achieve that outcome is irrelevant. White- box
testing, on the other hand, is concerned with the details. It
focuses on the internal workings of a system and only when all
avenues have been tested and the sum of an application’s parts
can be shown to be contributing to the whole is testing
complete [2].

II. Different Types Of Testing

There are several advantages to black-box testing. A few of

the most commonly cited are listed below:

A. Pros
1) Unbiased: Since the tester and developer are

independent of each other, the testing conducted is

balanced and unprejudiced. This makes it easier to

identify vagueness and contradictions in the

functional specifications since each specification is

analyzed objectively

2) Tester can be non-technical: This is because Black

box testing has no concern with the programming

language or the details of implementation of the

software and is saved from having a detailed

knowledge of the functioning of the system

3) Tests are reproducible: The invested efforts to test

the functional specifications can be used multiple

times. This is of great help especially when testing

large scale systems and cuts down on a plethora of repetitive
tasks.

B. Cons
Even though Black box testing has several advantages,

several drawbacks came to light when attempts were made to

create black box test systems, thus resulting in the feasibility

of black box testing approach to be questioned. Some of the

most commonly cited issues were:

1) Script maintenance: Black Box tools rely on the

method where the input provided is consistent.

Though using an image-based approach to testing is

advantageous, there’s a possibility that the user

interface may undergo changes constantly. In the

wake of such an event, Script maintenance becomes

very tedious and a difficult task.

2) Fragility: The test scripts are left fragile when

interacted with GUI. The reason for the occurrence is

that the GUI may not be rendered consistently at

regular intervals when deployed on different

hardware platforms or machines. The frequency of

failure of test scripts is high, unless the tool in use

possesses the ability of dealing with differences in

rendering of the GUI.

3) Lack of introspection: It’s a great irony that one of the

greatest criticisms of black-box testing it isn’t like

white-box testing; that it only analyses the behavior

and ignores the structural aspects which are dealt

with in white-box testing. Due to this reason, we can

never quite test a system completely, for many

program paths may remain untested.

4) Necessary vs. Luxury: When employing automated

testing methods, it is important to understand what is

necessary vs. what is a Luxury. Both testing

methodologies have some merit to their credit.

Figure 2. Different Types of Testing

8

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 3 [ISSN 2374– 1619]

Publication Date : 30 September, 2014

To help one understand what approach should likely be used

there are a few questions that every company should try to

find the answers to:

 Who will be the primary user of the application?

 What parts of the application must be tested before
deployment, and why?

 What programming language will my application be
coded in?

 When can one expect noticeable changes to the GUI?

 Will the changes affect the underlying code?

 In what areas is the application likely to be used?

 How will the application be put to use?

 Which platforms does the application need to run on?

Looking at each of these questions, some of the possible

answers that one may encounter are listed below:

 End users

 Any part of the application that the end user is likely
to be exposed to

 Python using Django framework

 Bi-Annually because our customers are always
expecting a refreshing experience

 Unless there are drastic changes, the underlying code
will be unaffected

 On the cloud

 Customers will login via the web and will enter
information through a series of screens

 Web browsers like Firefox, IE, Opera and Safari

When we analyze the answers to the questions listed

above, it is possible for us to make an educated guess and pick

the tool which would be ideal for use. Based on the answers

given one can make an educated decision around the type of

tool that should be used. If we consider the answers to the

question listed above, then for the application, a black-box

tool would be ideal since it has a customer-centered approach

and focuses on testing the GUI rather than the code of the

application. Moreover, a black box tool will possibly support

multiple platforms which are required in the application

described above.

On reviewing the questions suggested above does expose a

more fundamental question related to the nature of testing

itself. Why is it necessary to have an application tested? Even

though the question looks silly, it makes the long-term

viability of the two approaches being explored herein

clairvoyant.

All companies test their applications before deploying because

their users do not tolerate bugs. So, the main reason to carry

out testing is to satisfy the customer. Given this, It is obvious

that testing should be conducted in a manner which is fixated

on analyzing how a customer will use an application. If we

agree with this statement, unless and until black-box testing is

applied on an application, testing cannot be said to be

completed.

This argument is highly unlikely to be taken in good

spirits by the white-box tool vendors and distributors and is

likely to be criticized. It does bring up an interesting point

nevertheless. Let us introspect on what we know. Customers

interact with the GUI and do not deal with code generally.

They interact with the application by entering details as input

in some fashion and wait for the outcome to be displayed as

output. If the application processes the details successfully,

they get an acknowledgement which informs them of a

favorable result, making them happy. If not, they find it

problematic. This is similar to the approach followed by black-

box testing tools. Hence, it would be logical that black-box

tool be employed on the application. This doesn’t mean that

white-box testing tools don’t have a place in the testing life

cycle at all, but it touches on the point that they are ill-

equipped to provide sufficient coverage and an organization

cannot declare an application to be fully tested simply by

employing white-box tools.

The previous statement is likely to draw flak from

White-box tool vendors who would object strongly. They

would present a case explaining that their introspective

capabilities are superior when compared to a black-box testing

approach. However, a white-box vendor cannot guarantee a

consistent UI which properly reflects the code of the

application, whereas the converse can be said to be true by a

black-box vendor. A reason why this may happen is that one

of the properties of an object might be set to “visible” but due

to an error in a different part of the application or even due to

a problem outside it, the object might not be visible on the

GUI when viewed by the user. A white-box tool would log a

change in state and the record would state the change as

having passed. This is because the property of visibility was

successfully updated. It is not equipped enough to find out

whether the user is able to see the object or not, and the

possibility of such an occurrence happening is largely

overlooked. Even after the introduction of image-recognizing

elements which tackle the problem of visibility of an object

highlighted above, white-box tools are unable to deal with

frequent differences encountered while rendering an image.

Even though some shortcomings of white-box testing are

mentioned above, it shouldn’t lead to a decisive conclusion

which states that black-box testing is a comprehensive

coverage solution to test an application. On the contrary, what

is clairvoyant at this stage is that only after combining white-

box and black-box testing tools do we achieve an optimum

level of comprehensive test coverage. The reason in favour of

this statement is that both the methodologies are related to

9

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 3 [ISSN 2374– 1619]

Publication Date : 30 September, 2014

varying aspects involved in testing an application. For black-

box testing, the focus is on the appearance of the GUI, which

should be consistent enough to satisfy the user, providing him

a refreshing experience. Compared to this, the primary focus

of white-box testing is to deal with the internal structure of the

system and ensure that the application works as smoothly and

efficiently as possible based on the design. Due to this reason,

these two methodologies can be treated as complimentary to

each other. Organizations that have funds and resources

available are strongly encouraged to take advantage of both.

III. Black-box Testing: A
Necessary Step

So far this position piece has compared and contrasted

black-box approaches related to testing: On analyzing the

points, it has been observed that in black-box testing, the

emphasis is on the end user; and that undertaking black- box

testing is the best way of ensuring that the parts related to the

interface will work as planned. This point is stressed upon

because the user will spend a majority of his time interacting

with the GUI. On combining with the simplicity in terms of

using it with large scale systems, quicker test case

development and simplicity, black-box testing represents a

lower cost related to the initial stages than white-box testing

and delivers Return of investment in a shorter period of time.

The budgetary and time constraints faced by organizations are

well known and we can state that black-box testing is

necessary whereas white-box testing is a luxury in the quality

assurance process.

Once you've compiled this program, you'll use it to search the

following 3x3 matrix for some number. You are to carry out

black-box testing of this program, beginning with the matrix

[4]:

_ _

| 45 77 93 |

| 78 79 85 |

| 72 96 77 |

‾‾ ‾‾

Figure 3. Explaining the working process for Black Box Testing

• Search for the value 77. What output is produced?

 Search for the value 77. What output is produced?

 Search for the value 99. What output is produced?

Try searching for other values and/or with another matrix. Try

enough to show that your testing has turned up an error.

Record what input you used and the resulting output. TABLE

I. shows a sample of inputs used and resulting output.

Approach: Black box testing must be implemented wherever

the software has a tangible / testable output.

A degree of white box should be implemented depending on

the project complexity and Risk.

Project Complexity deals with interdependent components

(modules) and integration points (interfaces) in the project.

A. Example for project complexity:
1) Low: Informative website with a majority of its

content being static and involving mechanism

involving feedback or comments.

2) Medium: System which provides a wide range of

services and involving processing on the cloud, such

as an online compiler for multiple programming

languages.

3) Complex: Logistical Analytics related application

which deals with a huge amount of data, An Enterprise

application which consisting of several sub products

which are tightly integrated.

B. Example for integration point
impact:
If there are two components- output of 1 is input to the

other. First has 5 conditions and 5 outcomes second one is

internal and takes 2 inputs from DB – Black Box may need

5*2 = 10 cases to provide complete test coverage however

as White Box has knowledge of internal systems- can test

component 1 with 5 cases and component 2 with only 2

cases – also making sure the internal logic developed is

correct as it will be reviewed.

TABLE I. Sample Testing Scenario with inputs used and
resulting outputs.

TEST_

ID

INP

UT

EXPECTED

_OUTPUT

ACTUAL_

OUTPUT

STA

TUS

MAT_01 77 TRUE TRUE PASS

MAT_02 99 FALSE FALSE PASS

MAT_03 85 TRUE TRUE PASS

Figure 3. Explaining the working process for Black Box Testing

10

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 3 [ISSN 2374– 1619]

Publication Date : 30 September, 2014

IV. Conclusion:
While black-box testing has had its ups and downs in the

past, recent innovative approaches to black-box testing try to

solve its shortcomings, making it the likely choice to deal

with the ever increasing complexity of applications and

deliver a lower Total Cost of Ownership (TCO) and a better

Return on Investment (ROI) to organizations. It can be used

whenever there is a tangible/testable output involved along

with white-box testing involved to a certain extent,

depending on the risk involved as well as the complexity of

the project.

Acknowledgment

We sincerely thank everyone associated with this work.

References
[1] Pressman R.,”Software Engineering, A Practitioners Approach”,6th

Edition ,Tata McGraw Hill Publication,2004,ISBN 007-1240837.

[2] Pankaj Jalote,”Software Engineering”,Narosa Publishing House.``
[3] Furquan Naseer, Shafiq ur Rehman and Khalid Hussain.-Using Meta-

data technique for component based Black Box Testing\\6th

Internationalconference on emerging Technologies[ICET]2010,IEEE
[4] Ying jiang,Yin-a-Li and Xiao-Dong Fu.-The Support of

InterfaceSpecifications in Black-box Component Testing.Fifth
International Conference on Frontier of Computer Science and

Tecnology 2010.IEEE,2010,p.305-311.

[5] Mohd.Ehmer Khan,”Different Forms of Software Testing Techniques
for Finding Errors,”IJCSI,Vol.7,Issue 3,No 1,opp 11-16,May 2010.

[6] Mohd.Ehmer Khan,A ComparativeStudy og White Box,Black Box and

Grey Box Testing Techniques.”International Journal of Advanced
Computer Science and Applications,Vol.3,No.6,2012.

About Authors:

Aniket Ramgiri has his interest in testing,

graphical passwords, data warehouse modeling

and data warehouse testing. He has completed

his B.E. from Jawaharlal Nehru Engineering

College, Aurangabad.

Harpreet Oberai has been working with

Zensar Technologies Ltd and has total of 11

years of experience in BFSI domain. His

profile includes Project Management,

requirement gathering, data modelling, testing

and estimation. He has completed his B.E. from

Bharati Vidyapeeth COE, Navi Mumbai and

MMS from IES Management College,Mumbai.

Ruhi Oberoi has been working with

Jawaharlal Nehru Engineering College as

Assistant Professor since last 10 Years. Her

profile includes testing, graphical passwords,

data warehouse modeling and data warehouse

testing. She has completed her M.E. from

Government college of Engineering College,

Aurangabad.

