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Condition monitoring of slow rotating bearings based 

on Bayesian linear regression 
 [S.A. Aye, P.S. Heyns and C.J.H. Thiart] 

 
Abstract— Preventive maintenance and run to failure 

techniques of bearing condition monitoring could be quite 

expensive. The failure could equally be catastrophic thereby 

leading to the damage of several other components of the 

machinery. Many bearing studies are done at constant loading 

and speed and constant conditions. However, this study is carried 

at varying loads and speed conditions. This paper therefore 

presents a condition monitoring methodology based on Bayesian 

linear regression technique which is at varying load and speed 

condition. 
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I.  Introduction 
Zaidan et al [1] investigated fatigue induced crack-growth 

using Bayesian approaches to illustrate the use of data-driven 
prognostics to deliver benefits to the industry. Zonta et al. [2] 
presented a damage detection procedure based on Bayesian 
analysis of data recorded by permanent monitoring systems as 
applied to condition assessment of Precast Reinforced 
Concrete (PRC) bridges. Given the prior distribution, the 
method assigned posterior probability to each scenario as well 
as updated probability distributions to each parameter. The 
effectiveness of this method was illustrated as applied to a 
short span PRC Bridge instrumented with a number of fiber-
optic long gauge-length strain sensors. Zuffranieri and 
Robinson [3] applied Bayesian medical monitoring concepts 
based on using real-time performance-related data to make 
statistical predictions about a patient's future health. Zhang et 
al. [4] proposed a Bayesian approach for estimating the failure 
rate of power transformers. This was accomplished by using 
likelihood function which is constructed based on available 
condition monitoring information to update the assumed 
probabilistic model of transformer failure rate. Heyns et al. [5] 
proposed a methodology based on Bayesian regression to 
isolate the effect of varying vehicle speed on the measured 
vehicle response metric.  

Most condition monitoring techniques for bearings do not 
take into cognisance the varying load and speed. This paper 
therefore presents a condition monitoring methodology based 
on Bayesian linear regression technique which is independent 
of load and speed changes. Also, there are number of studies 
that applied Bayesian approach to bearing condition 
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monitoring. However, most of these studies have essentially 
applied it for classification purposes. Therefore, this study 
deviates from previous studies by using the Bayesian approach 
for predictive purpose. Specifically, the study uses a Bayesian 
linear regression with Gaussian distribution assumption to 
determine the relationship between bearing vibration signal 
and speed at various loading conditions for prediction 
purposes. 

II. Bayesian Linear Regression 
methodology 

The parametric approach focuses on the use of probability 
distributions having specific functional forms governed by a 
small number of adaptive parameters, such as the mean and 
variance whose values are to be determined from the data set. 
The probability distributions include beta (binomial) and 
Dirichlet (multinomial) distributions for discrete random 
variables and the Gaussian distribution and Gaussian mixture 
distribution for continuous variables. In this study the data is 
continuous hence the Gaussian distribution and Gaussian 
mixture distributions are considered [6]. 

The Gaussian, also known as the normal distribution, is a 
widely used model for the distribution of continuous variables 
[6]. For the case of a single real-valued variable,  , the 
Gaussian distribution is defined by: 

 

which is governed by two parameters:  , called the mean, 

and 
2 , called the variance. 

The reciprocal of the variance is called the precision and is 

written as: 

 
In this study vibration signal is extracted at different 

operating conditions (speeds, angles and loading conditions). 

A regression function, which measures the bearing vibration 

as a function of the different operating conditions is fitted. The 

regression function is estimated based on both the data driven 

likelihood and a parameter prior. The prior serves as indication 

of the classic nature of these interpolation functions. As such 

the prior allows for more vigorous interpolation functions, 

particularly if only limited and noisy data are available. 

Let the original Kurtosis value which is associated with a 

specific loading condition, j as measured at a mean speed of 

j

iv over that load be denoted by
j

iy . Some variability in the 

bearing response as measured over any loading condition at a 

given speed is expected. This variability is accounted for by 
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including an error term ie , which is assumed to have a zero 

mean independent identically distributed Gaussian distribution 

),0(~ 2

eNe  with a constant variance, 
2

e . 

An operating condition vector, x, is defined and 

implemented so that one vector 
j

ix  corresponds to each 

Kurtosis datum point
j

iy . This operating condition vector 

controls the flexibility of the implemented regression function. 

The regression function in turn reveals the expected influence 

of operating condition (speed) on the vibrations values. Four 

simple regression functions are investigated, namely: linear, 

quadratic, exponential and double log. The operating condition 

vector may easily be extended to also investigate higher order 

polynomial functions, or to also consider the influence of other 

variables such as bearing acceleration, angular rotation, etc. 

Bayesian model selection is used to select the most 

appropriate among the proposed interpolation functions. 

An observation 
j

iy is described as the sum of the specific 

loading condition interpolation function as evaluated for the 

corresponding operating condition vector )( j

ixf and the noise 

term ie . 

 
The interpolation function can be approximated as having 

a linear dependency on x if the operating condition vector is 

sufficiently expressive. It may be justified to assume that this 

linear dependency is expressed by the parameter vector
jw : 

 
Any discrepancies in this assumption are absorbed by the 

noise term. 

Let all the Kurtosis measurements which correspond to a 

specific loading condition be denoted by the vector
jy , and let 

all the associated operating condition vectors be contained in 

the matrix
jX . The likelihood of the data given the model as 

represented by the parameter values 
jw is denoted 

as ),( jj

i

j

i wxyp . Due to the independent noise assumption 

the joint likelihood for the, K, Kurtosis observations which 

correspond to any loading condition, may simply be computed 

as the product of the individual datum point likelihoods: 

 

 
The parameter estimates which optimize equation (6) is 

equivalent to the least square error (LSE) solution. It is 

assumed that there are a number of loading conditions where 

sufficiently many measurements are available so that the LSE 

solution will be fairly good. The parameter values for those 

LSE estimates (as estimated at loading conditions with good 

data) are used as guideline to what the typical parameter 

values are to be at other loading conditions where sufficient 

data may not be available. 

A multivariate Gaussian distribution is estimated from the 

LSE solutions for the reference loading condition.This 

distribution is subsequently used as the prior distribution p(w). 

Let the prior mean be denoted by the vector
o , and let the 

covariance matrix be denoted as 
o , so that the prior may be 

expressed as: 

 
According to Bayes’ theorem the prior and the data driven 

likelihood is used to obtain a posterior distribution over the 

parameter values: 

 

 
where the marginal likelihood )( Xyp serves to normalize 

the posterior. Prior probability is the probability available 

before the observation. However, posterior probability is the 

probability obtained after the observation. The likelihood 

function expresses how probable the observed data set is for 

settings of the parameter vector. It may be shown that the 

posterior distribution is also a Gaussian distribution [6]: 

 

where the posterior mean e and covariance e  for loading 

condition j is given by: 

 

 

The likelihood of observing a kurtosis value *y  at different 

speeds
jx* may be estimated from the updated likelihood 

function which is again of Gaussian form [6]: 

 

The variance  2*

j of the predictive distribution indicates the 

uncertainty in a prediction at operating condition 
jx*  and is 

given by: 

 
Bayesian model selection is used to select the most 

appropriate among the proposed interpolation 

functions.Bayesian model comparison criterion was proposed 

by Spiegelhalter et al [7] based on the principle shown in 

equation 14: 

 
The deviance ( )(D ) gives the measure of the goodness 

of fit as shown in equation 15: 
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Where Llog  is the log likelihood and   is the 

parameters of the model. 

Complexity ( pD ) measured by estimating the effective 

number of parameters as shown in equation 16: 

 

  
i.e. posterior mean deviance minus deviance evaluated at 

the posterior mean of  the parameters. The DIC is then defined 

analogously to Akaike Information Criteria (AIC) as equation 

17: 

 
Models with smaller DIC are the best models as they are 

better supported by the data. 

Once, the best model has been selected, the next step 

would be to predict and/or project the value of kurtosis given 

the parameters of the model and the specified operating 

condition (in this case speed). 

The posterior predictive distribution is either the 

replication of y given the model (usuallyrepresented as
repy ), 

or the prediction of a new and unobserved y (usually 

represented as 
newy or

'y ), given the model. This is the 

likelihood of the replicated or predicted data, averaged over 

the posterior distribution  yp | . These are given by 

equations 18 and 19: 

    or 

     
If y has missing values, then the missing ys can be 

estimated with the posterior predictive distribution [8] as 
newy from within the model. For the linear regression 

example, the integralfor prediction is given in equation 20: 

 
The posterior predictive distribution is estimated by 

equation 21: 

 
Where  X and   is the conditional mean, while 

2  is the residual variance. 

III. Experimental setup 
An experimental setup is used in this research to collect 

acoustic emission signals from slow rotating bearing. The 

setup captures the essential physics involved in real life 

applications as well as practically feasible and fit into the 

laboratory and not to be too expensive. Damage is introduced 

to the bearing outer race. The test rig is designed to simulate 

early stage of bearing defects. The pictorial view of the setup 

is shown below in Figs. 1. The slow rotating bearing test setup 

comprises of 36 components: the top end plate, sonic shaker, 

flat spacer to fit sonic male, load cell, flat spacer male to fit 

load cell, cylindrical bush, test bearing shaft, dummy bearing 

shaft, test bearing v belt pulley, servo motor pulley, dummy 

bearing pulley, bearing inner race, bearing outer race, spacer 

for boom arm, boom arm for loads, bottom end plate, pillars, 

servo motor, servo motor support bracket, servo motor v belt, 

test bearing v belt, base plate bolts, servo motor support 

bracket bolt, servo motor bolt, support for the setup, test 

bearing block, speed controller, cables, data loggers, coupling, 

and acoustic emission sensors.The test rig which consists of all 

the component parts listed above subdivided into the 

servomotor unit, the slowly rotating bearing unit, the dummy 

bearing unit, and a dynamic loading unit. The test setup is 

designed to be able test any type of slow rotating bearing. 

Again because of cost limitations, only one type of slow 

rotating bearing would be tested. 

The experimental test setup shown in Fig. 1 below is used 

in this research to collect the acoustic emission signals for two 

purposes: to study the vibration and acoustic emission 

signatures generated by incipient bearing faults, and for the 

substantiation of the methods to be established. The system is 

driven by an AC servo motor with the speed range between 0 

and 1000 rpm. The shaft rotation speed is controlled by a 

speed controller. A tachometer is used for shaft rotational 

speed measurement. Hence, the shaft rotational speed is read 

from the speed controller, which can be further confirmed by 

applying the FT on the signals from the tachometer. A dummy 

bearing is used between the servomotor and the test bearing so 

as to prevent direct loading and damage to the servo motor. 

Accelerometers and acoustic emission sensors are mounted on 

the housing of the tested bearing to measure the vibration and 

acoustic signals. 

The slow rotating bearing is loaded at various equivalent 

dynamic load of between 0 kN and up to 2 kN load using the 

sonic shaker. The speed controller controls the rotational 

speed of the bearing.  

The test is conducted at several dynamic loadings of a 

maximum of between 2 kN. Sonic actuator is used for 

inducing the dynamic loads. Usually dynamic loads are 

applied both axially and radially. However, it is possible to 

find equivalent dynamic loads in only one direction. Hence, 

application of equivalent dynamic loading is to be done in the 

axial directions. 

The test is conducted at moment loadings of a maximum of 

between 1 kNm.  

 
Fig. 1a: The experimental test set up  
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Fig. 1b: Dynamic loading sine wave input shown on K7500 Servocontroller 

for -1.2200V 

 
Fig. 1c: Dynamic loading sine wave output shown on Oscilloscope for -

1.2800V 

 
Fig. 1d: Labview interphase for data acquisition 

 

IV. Data acquisition and Signal 
Processing 

Data acquisition is the process of obtaining information on 

the condition of the health of equipment through method of 

continuous sampling at selected time intervals. Sensors are 

used in the collection of data in analog form. The obtained 

data is then converted into digital format for further processing 

and feature extraction with the help of special software. Signal 

detection procedure for bearing condition monitoring is 

important part for predictive maintenance of machinery. 

Selection of desired features and their relevant features plays a 

vital role for both diagnostic and prognostic purposes. The 

accurate forecast of bearing impended faults can lead to proper 

planning and replacement in order to avoid disastrous failures 

of the whole machinery. 

The main purpose of data acquisition of signals is to 

quantify the changes in machinery conditions. Whenever, 

mechanical distress occurs it appears in the form of relative 

motion on entire components in the form of vibration or 

acoustic emission etc. Thus with the help of appropriate 

sensors this deviation from the norm is measured and 

processed in order to build either the fault diagnostic models 

or prognosis models. This research work is dedicated to the 

prognosis of slowly rotating bearings under time variant 

conditions. Usually, bearings are chosen based on their life 

calculation with respect to their industrial use and operational 

factors. 

The AE data acquisition system consisted of piezoelectric-

type AE transducers, amplifiers, an A/D card/data logger, and 

the computer. The signal output from the preamplifier will be 

connected directly to a commercial acquisition card that 

occupies one of the ISA slots within a Pentium host PC.  

 

Signal processing software for Acoustic Emission 

The National Instruments Lab View software will be used 

for collection of acoustic emission data. The function for 

capturing time domain and pre selected sampling time and 

interval will be used. The rest of the processing and analysis 

would be performed through Matlab programs for signal 

processing and analysis. 

 

V. Results and Discussion 
The observed kurtosis and speed at different loading 

conditions is shown in Fig. 2. The kurtosis of a signal is very 

useful for detecting the presence of an impulse within the 

signal. It is generally used for detecting discrete impulsive 

faults in rolling element bearings. Good bearing have a 

kurtosis value of approximately 3, and bearings with 

impulsive faults tend to have values greater than 3[9]. 

1 2 3 4 5 6 7 8 9 10 11
2.5

3

3.5

4

4.5

5

5.5

6

6.5

K
u
rt

o
s
is

Speed [rad/s]

 

 

0.6kN max

1.1kN max

1.2kN max

1.4kN max

1.4kN max

 
Fig. 2: Observed kurtosis and speed at different loading conditions 

 

Four Bayesian models were specified namely, linear, 

quadratic, exponential (log linear) and double log. The 

Bayesian models were estimated using 11000 MCMC 

simulations. The initial 1000 were used as burn-ins to mitigate 

the start-up effect. 

 

VI. Model Selection 
One easy way to compare Bayesian models is by using the 

deviance information criterion (DIC) statistic. This statistic is 

intended to be a measure of model complexity. The model 

with the smallest DIC is taken to be the best model [7]. Hence, 

to determine the best model for the data, the DIC was used for 

model selection. The DIC values for the various models at 

various loading conditions are tabulated in Table 1. It can be 

clearly seen that the highest DIC values are for the linear and 

quadratic models. Similarly, the lowest values are for 

Exponential and Double log models. After convergence, the 

DIC values obtained for the linear, quadratic, exponential and 

log-log models are 18.689, 17.365, -25.282 and -28.998 

respectively for the first loading condition. The double log has 
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the smallest DIC value.The double log is consistently the best 

model for all the loading conditions with the exception the 

1.4kN loading thus providing evidence that the double log 

model better describes the data. Therefore further inferences 

will be solely based on the double log model. 

 
Table 1: DIC values of the various models 

Model 
DIC@ 
0.6kN 

DIC@ 
1.1kN 

DIC@  
1.2kN 

DIC@ 
1.4kN 

DIC@ 
1.4kN2 

Linear 18.69 17.89 15.73 14.22 26.14 

Exponential -25.28 -26.06 -28.19 -27.87 -21.15 

Quadratic 17.37 18.83 16.09 16.00 27.40 

Double Log -29.00 -26.97 -29.11 -26.33 -22.07 

 

VII. Convergence 
Convergence of the parameters can be monitored using the 

time series plots, autocorrelation plots and Gelman-Rubin 

statistic. The history plots for the sample of 10000 iterations 

are displayed in Fig. 3. The figures show that the current 

model has converged and therefore valid inferences can be 

made from the results. 

 

 

 
Fig. 3: Trace plot for 0.6kN loading condition 

 

VIII. Posterior distribution and 
estimates 

The posterior density of the parameters of the model are 

plotted in Fig. 4 while Table 2 reports the posterior mean, 

standard deviation, MC error and the 95% credible interval for 

the parameters (beta0, beta1 and sigma2) at the 0.6kN loading 

condition.The accuracy of the posterior estimates can be 

determined using the MC error for each parameter. The rule of 

thumb is that the posterior estimate is accurate if the MC error 

is less than 5 % of its standard deviation. The MC error for 

each parameter is indeed less than 5 percent of its standard 

deviation, thus confirming the accuracy of the posterior 

estimates.  

At 0.6kN maximum loading condition, if the speed 

increases by 1%, then kurtosis increases by 0.18%. The 

significance of the effect of speed on kurtosis can be 

determined by using the standard deviation (analogous to the 

standard error in frequentist approach). If the mean is greater 

than twice the standard deviation, then the effect of speed on 

kurtosis is statistically significant. Alternatively, the t-statistics 

can be used and this is calculated as the ratio of the mean to 

the standard deviation. This computed t-value is then 

compared to the critical value of t obtained from the table of 

student t distribution. For a two tail-test as in this case: If 

1.645<t<1.960 it implies that the effect of speed on kurtosis is 

significant at 10% level; If 1.960<t<2.576 it implies that the 

effect of speed on kurtosis is significant at 5% level; If t>= 

2.576 it implies that the effect of speed on kurtosis is 

significant at 1% level. The computed t-value for beta1 at 

loading condition 0.6kN is 3.18 which implies that the effect 

of speed on kurtosis is positive and significant at 1% level. 

The value of the intercept (beta0) is equal to the value of 

kurtosis when speed is zero. In this case, the value of kurtosis 

will be 0.52 at zero speed. The computed t-value for beta0 at 

loading condition 0.6kN is 12.41 which imply that the 

intercept is significant at 1% level. All the posterior means are 

contained in the credible interval covering 95 per cent of the 

posterior mass.  
Table 2: Parameter estimates at loading condition 0.6kN 

node mean Sd MC error 2.50% 97.50% 

beta0 0.5211 0.04199 4.89E-04 0.4368 0.6058 

beta1 0.1804 0.05668 6.86E-04 0.06615 0.2929 

sigma2 0.0030 0.00197 2.43E-05 0.00101 0.0081 

 

Fig. 4 is the posterior densities (distributions) for the 

parameters (beta0, beta1 and sigma2) at the 0.6kN loading 

condition. 

 
 

 
Fig. 4: Posterior densities of the parameter estimates at 0.6Kn 

 

IX. Model prediction 
Reasons for making predictions about unknown quantity 

(eg kurtosis) may include: to “fill in” missing data; replicate 

datasets in order to check the adequacy of the model; and/or 

make predictions about the future. Obtaining the appropriate 

full predictive distribution of the dependent variable could be 

challenging. One needs to account for three components: 

uncertainty about the expected future value of kurtosis, the 

inevitable sampling distribution of kurtosis around its 

expectation, and the uncertainty about the size of that error, as 

well as the correlations between these components. 
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Fortunately, it is so trivial to obtain such predictive 

distributions using MCMC that it can be dealt with very 

briefly. The prediction for kurtosis given the estimated and the 

observed values of speed are shown in Fig. 5 alongside the 

95% confidence band. The fit of the model is good as the 

fitted line falls within the lower and upper bounds. The 

observed data points are clearly fall on the fitted line as 

illustrated in Fig. 6. This again confirms the predictive power 

of the model. The boxplot is also shown in Fig. 7. 

 
Fig. 5: Model fit at 0.6kN  

 
Fig. 6: Model fit at 0.6kN  

Scatter plot with the rhombus shaped data points. 

 
Fig. 7: Model fit at 0.6kN  

 

In order to see the adequacy of the model for future 

projections, the three new values of speed were added and the 

unknown values of kurtosis were projected for those new data 

points. The projected results are shown in Figs. 8, 9 and 10. 

Again the adequency of the model for future predictions is 

established. 

 
Fig. 8: Model projection at 0.6kN  

 
Fig. 9: Model projection at 0.6kN  

 

 
Fig. 10: Boxplot for model projection 

X. Conclusion 
Preventive maintenance and run to failure techniques of 

bearing condition monitoring could be quite expensive. The 

failure could equally be catastrophic thereby leading to the 

damage of several other components of the machinery. Many 

bearing studies are done at constant loading and speed. 

However, this study is carried at varying loads and speed 

conditions using Bayesian linear regression. This paper 

therefore presents a condition monitoring methodology based 

on Bayesian linear regression technique under varying load 

and speed conditions. Four models namely: linear, quadratic, 

log linear and double log were fitted to the data. The double 

log was selected as the best predictive model based on DIC. 

The results from the model show that speed has significant 

effect on kurtosis at different loading conditions. The 

estimated parameters of the model and the observed speed 

were used to make predictions into the future. The model was 

able to forecast the current kurtosis values as well as the future 

values accurately. 
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