Estimation of Cost for producing an Exhaust Fan through Injection Moulding and Comparison with Rapid Tooling *B.Iftekhar Hussain, Mir Safiulla, D.L.Komala Rao Abstract—Injection Moulding is one of the widely used methods to produce plastic parts. Cost is one of the predominant factors that affect the selection and usage of a particular technology. This paper provides an insight on manufacturability and cost estimation for injection moulding tool required to make an exhaust fan. The cost thus arrived by conventional means is compared with the cost associated with the use of Rapid Tooling technology. *Keywords*—Injection Moulding, Cost, Manufacturability, Estimation, Exhaust Fan, Rapid Tooling. ### Introduction Injection moulding is one of the most common processes used to produce plastic parts. It is a cyclic process of rapid mould filling followed by cooling and ejection. The material, which is generally available as grains or powder, is plasticized in an injection unit and injected into a clamped mould under high pressure [1]. In Injection Moulding Industry greater degree of competence is required to estimate the cost associated with a system, which determines the selling price and profit margin for the product because it is carried out from toolmakers point of view rather than end use of product or process involved. Ferreira and Alves had tried to validate the integration of reverse engineering and rapid tooling technologies in foundry process [2]. Yarlagadda and Wee had made an attempt to design, develop and evaluate the performance of mould inserts for injection moulding by using a powder sintering process [3]. Ferreira et al. had proposed a methodology to integrate reverse engineering with additive rapid prototyping and tooling techniques in order to manufacture EDM electrodes by reducing lead-time and the associated costs [4]. Luo and Tzou had developed the direct metallic Rapid Tooling system by optimizing the process parameters of laser cladding so as to fabricate the mould inserts in order to produce ABS parts of high quality [5]. Rahmati and Dickens had evaluated the rapid tools (built by Stereolithography process) to analyze the maximum number of successful injections and quality of performance [6]. Mech. Engg. Dept., Bapatla Engineering College, Bapatla-522101, A.P India Mir Safiulla Head (R&D), MED, Ghousia College of Engg., Ramanagaram-562159 India Ahn had presented the researches related to the application of laser assisted metal rapid tooling process to manufacture moulding and forming tools [7]. Efforts have been made by Nagahanumaiah et al. to build a methodology for process selection and manufacturability evaluation of computer based rapid tooling for producing injection moulds [8]. Attempts were made by Folgado et al. to develop a model so as to have the lowest life cycle cost in the manufacture of injection moulds [9]. Liou et al. had developed a solution to the problem of de-molding destruction by presenting a heatgenerable mold insert for micro injection molding [10]. This paper proposes a methodology on manufacturability of the mould and estimation of cost required to make the mould both by conventional tooling process and rapid tooling process. ### п. Methodology The details of exhaust fan are shown in figures 1(a) and 1(b). The core and cavity of mould tool to make the exhaust fan is designed as per HASCO standards by providing shrinkage allowance of 1.25%, draft angle of 1⁰ along core side and 1 mm radius in all sharp corners [11]. Vericut 6.2.1 is used to generate the NC code and study the manufacture of mould and its allied difficulties therein. Fig. 1(a). 3D CAD Model of an exhaust fan Fig. 1(b) 2D drawing of exhaust fan ^{*}B.Iftekhar Hussain, D.L.Komala Rao The Cavity and Core of mould so designed are shown in figures 2(a) and 2(b) respectively. The cavity work piece before NC machining is depicted in figure 3. The roughing view of the cavity is shown in figure 4. The finishing play path of Cutting tool for Cavity is shown in figure 5. The work piece of core before NC machining is depicted in figure 6. The roughing view the core is displayed in figure 7. The finishing view of the play path of cutting tool for core is displayed in figure 8. Fig. 2(a) Model of Cavity Fig. 2(b) Model of Core Fig. 3 Cavity Work piece Fig. 4 Roughing view of the Cavity Fig. 5 Finishing view of the Cavity Fig. 6 Core Work piece Fig. 7 Roughing view of the Core Fig. 8 Finishing view of the Core ### ш. Estimation of Cost ## A. Estimation of cost for conventional tooling The bill of materials required to fabricate a mould with its associated cost is furnished in Table 1. The processing cost required to make an entire mould assembly is shown in Table 2. Further Table 3 shows the total cost associated with the conventional tooling system. ### B. Estimation of cost for Rapid Tooling The cost for making a mould by Rapid Tooling depends upon several factors viz. additive manufacturing technique adopted, layer thickness, orientation; build time, tessellation file with triangles/facets, size of the mould, cooling channels etc. Hence two commercially available techniques which are widely used in the industry for short volume of production is demonstrated in this paper. They are Stereolithography (SLA) and Fused Deposition Modeling (FDM). Moreover the cost of Rapid Tooling depends upon build time, immaterial of the complexity of the mould unlike conventional tooling. Therefore the build time for these techniques is determined based on which the cost is calculated. Rapid Tooling time depends on the material to be built, not the material to be subtracted as the case of conventional machining process. Hence the external dimensions of the mould are reduced for bringing down the usage of material and cost as the tool is for low volume of production quickly. For large volumes of production and the situation where time is not a rigid constraint, conventional process is economical. The build times shown in Table 4 may seem to be high, albeit it is very low when compared to the days or weeks of time required to make a conventional mould by the skilled personnel. Table 5 shows the cost parameters involved in Rapid Tooling. A generic cost model for rapid tooling to estimate the cost is given in equation (1). The labor costs shown in Table 5 are with reference to the organizations based at Bengaluru, India as on the date of studies performed and may vary from place/country. Furthermore the total cost calculated comprises of risk of 15% and a transportation cost of INR 2000 for both core and cavity. ### iv. Conclusion An injection mould tool is designed for fabricating exhaust fan. The manufacturability of exhaust fan is studied using Vericut software after generating the CNC manufacturing program to make the mould using conventional process of machining. A methodology for arriving at the tooling cost for manufacturing exhaust fan is depicted. The estimated costs of mould using conventional machining process and Rapid Tooling (SLA and FDM) are compared. Even though the three costs were nearby, the urgency of the mould, volume of production and quality required are the factors that determine the implementation of rapid tooling process. For low volume of parts to be produced quickly, Rapid tooling is the most feasible process immaterial of the complexity of part design. ### References - V. Goodship, Practical Guide to Injection Moulding, Rapra Technology Limited, Shrewsbury, U.K, 2004. - [2] Ferreira, J.C., Alves, N.F., 2003, "Integration of reverse engineering and rapid tooling in foundry technology", J. of Mat. Processing Tech., 142, 374–382. - [3] Yarlagadda. P.K.D.V., and Wee, L.K., 2006, "Design, development and evaluation of 3D mold inserts using a rapid prototyping technique and powder-sintering process", Int. J. of Production Research, 44, 5, 1, 919– 938 - [4] Ferreira, J.C., Mateus, A.S., Alves, N.F., 2007, "Rapid tooling aided by reverse engineering to manufacture EDM electrodes", Int J Adv Manuf Technol., 34, 1133–1143. - [5] Luo. R.C., and Tzou, J.H., 2007, "The Development of Direct Metallic Rapid Tooling System", Automation Science and Engineering, IEEE Transactions on. 4, 1, 1. - [6] Rahmati, S., Dickens, P., 2007, "Rapid tooling analysis of Stereolithography injection mould tooling", Int. J. of Machine Tools & Manufacture, 47, 740–747. - [7] Ahn, D.G., 2011, "Applications of Laser Assisted Metal Rapid Tooling Process to Manufacture of Molding & Forming Tools—State of the Art", Int. J. of Precision Engg. and Manuf., 12, 5, 925-938. - [8] Nagahanumaiah, Subburaj, K., Ravi, B., 2008, "Computer aided rapid tooling process selection and manufacturability evaluation for injection mold development", Computers in Industry, 59, 262–276. - [9] Folgado, R., Pecas, P., Henriques, E., 2010, "Life cycle cost for technology selection: A Case study in the manufacturing of injection moulds", Int. J. Production Economics, 128, 368–378. - [10] Liou, A.C., Chen, R.H., Huang, C.K., Su, C.H., Tsai, P.Y., 2014, "Development of a heat-generable mold insert and its application to the injection molding of microstructures", Microelectronic Engineering, 117, 41–47. - [11] Hasco standards for injection moulding tools, compression moulds and pressure die-casting moulds, Hasco Hasenclever GmbH, Germany, 2013 - [12] Dinesh, P., and Ravi, B., 2007, "Rapid tooling route selection and evaluation for sand and investment casting", Virtual and Physical Prototyping, 2, 4, 197—207. Table 1. Individual component cost | S No | PART
DESIGNATION | MATERIAL DETAILS (All the dimensions are in millimetres) | PRICE (INR) Rs.174212/- | | |------|-------------------------------|--|--------------------------|--| | 1 | Core plate | 796x796x150mm=741.33kg
Material used is EN28 | | | | 2 | Cavity plate | 796x796x150mm=741.33kg
Material used is EN28 | Rs.174212/- | | | 3 | Core back plate | 796x796x40mm=198.95kg
Material used is mild steel | Rs.13263/- | | | 4 | Cavity back plate | 796x796x20mm=99.47kg
Material used is mild steel | Rs.6632/- | | | 5 | Ejector plate& retainer plate | 600x600x18=50.868kg
Material used is mild steel | Rs.3392/- | | | 6 | Ejector pins | Qty-3
Material used is OHNS | Rs.1200/- | | | 7 | Push Back pins | Qty-4
Material used is EN8 | Rs.1200/- | | | 8 | Guide pillar and guide bush | Qty-8
Material used is carbon steel | Rs.8000/- | | | 9 | Grids | 796x100x85mm length
Qty-2
Material- EN8 | Rs.7000/- | | | 10 | Sprue bush | Material- EN8 | Rs.600/- | | | 11 | Dowel Pins | Dia 20x150 pins | Rs.500/- | | | | | MATERIAL COST | Rs.390211/- | | | | | +20% Allowance | Rs. 78042/- | | | | | TOTAL MATERIAL COST | Rs. 468253/- | | Table 2. Processing cost required for making an entire mould assembly | S.No | PROCESS | Cost in INR | | | |------|---|-------------|--------|--| | 1 | Primary machining | Rs. | 7,500 | | | 2 | Machining of Core | Rs. | 25,000 | | | 3 | Machining of Cavity | Rs. | 30,000 | | | 4 | Cylindrical grinding of Guide pillar | Rs. | 5,000 | | | 5 | Heat treatment for core, cavity, runners, overflows | Rs. | 30,000 | | | 6 | Polishing for core, cavity, runners | Rs. | 25,000 | | | 7 | Chrome plating for core, cavity in pattern area | Rs. | 3,000 | | | | TOTAL | Rs. | 125500 | | Table 3. Total Mould Cost | | 1 4010 01 1 0 1411 1 1 1 0 4 1 4 0 0 0 0 | | | |------|--|-----|-----------| | S.No | Particulars | Co | st in INR | | 1 | Material cost | Rs. | 468253 | | 2 | Machining cost | Rs. | 125500 | | 3 | Transportation | Rs. | 2000 | | 4 | Risk (15% of material & machining cost) | Rs. | 89063 | | | TOTAL | Rs. | 684816 | | | | | | ### International Journal of Advancements in Mechanical and Aeronautical Engineering – IJAMAE Volume 1 : Issue 3 [ISSN 2372 –4153] Publication Date: 30 September, 2014 Table 4 Build Time for Rapid tooling | RP machine | Manufacturer | Material | Layer thickness (mm) | Build rate (mm ³ /min) | Reference | Build time (hours) | |------------|--------------|------------|----------------------|-----------------------------------|-----------|--------------------| | SLA 5000 | 3D Systems | SLA 5530 | 0.10 | 1092 | [12] | 28.62 | | FDM 250 | Stratasys | ABS (P400) | 0.25 | 300 | [12] | 104.17 | A generic cost model for rapid tooling to estimate the cost is given in equation (1) below [12]. $$C_{T} = (T_{pre} + T_{post})C_{labour} + T_{build}C_{build} + (1 + \frac{l_p}{100})W_{part}C_{part_mat} + (1 + \frac{l_s}{100})W_{sup}C_{sup_mat}$$ $$\tag{1}$$ where, C_T is the total cost involved using Rapid Tooling in Indian Rupees (INR), T_{pre} is the preprocessing time before building a part (h), T_{post} is post-processing time, (such as support removal), in building a part (h), C_{labour} is labour cost rate (INR/h), T_{build} is build time (h), C_{build} is machine hour rate (INR/h), I_p is percentage of part material loss, W_{part} is the weight of the part material (kg), C_{part_mat} is rate with which part material is procured (INR/kg), I_s is the percentage of support material loss, W_{sup} is the weight of the support material (kg), and C_{sup_mat} is the cost of the support material (INR/kg). Table 5 Cost parameters for Rapid Tooling | RT process | T_{pre} | T_{post} | C_{labour} | T_{build} | C_{build} | l_p | W_{part} | C_{part_mat} | l_s | W_{sup} | C_{sup_mat} | C_T | |------------|-----------|------------|--------------|-------------|-------------|-------|------------|-----------------|-------|-----------|----------------|--------| | SLA | 2 | 3 | 2000 | 28.62 | 2000 | 5 | 35 | 4000 | 60 | 15 | 2000 | 605152 | | FDM | 1 | 2 | 1000 | 104.17 | 1000 | 5 | 30 | 3500 | 50 | 10 | 2500 | 588316 |