
[image: image11.jpg]

Defensive Programming to Reduce PHP Vulnerabilities
Divya Rishi Sahu, Deepak Singh Tomar
Abstract— Incremental and rapid growth has been observed in Web Application’s tools and techniques. But most available Web Applications are vulnerable to attacks due to their ad hoc nature. It is difficult to evaluate security achievements unless things go wrong. The primary concern of falsehood programmer is to provide user-friendly interfaces and security is the secondary. Poor written code for Web Application present a very high risk and an attractive target for the attacker. Defensive Programming is the approach to develop secure Web Applications. The aim of this paper is twofold. Firstly, to understand PHP vulnerabilities, an attack tree has been constructed and based on the attack tree, attack scenarios for email spoofing, remote file creation, remote file inclusion and information disclosure are presented. Secondly, Defensive programming techniques are applied to handle these vulnerabilities. The work presented in this paper shall be helpful for web programmer to develop fool proof Web Applications.
Keywords— Defensive Programming, PHP Vulnerability, Attack Tree, Mail Spoofing
I. Introduction

Recently it was found that nearly 90 percent of all websites are vulnerable. Many web sites were hacked by attacker through exploiting the insecure code. SQL Injection, command injection, Buffer overflow, Remote File Inclusion, XSS are few common attacks. To minimize the likelihood of security vulnerabilities caused by programmer error, Web developers should adhere to recommended coding guidelines.

Defensive programming is a safe technique to develop secure applications. It always validates assumptions and handles error messages properly. It prevents snippet to be misused and builds the software to behave in a predictable manner despite unexpected inputs. At development phase, it is the concern of the developer to keep security in mind and write secure code to minimize the PHP vulnerabilities. Second concern is of hosting provider to keep appropriate settings.
[image: image12.jpg]

Divya Rishi Sahu
MANIT, Bhopal
India
Deepak Singh Tomar
MANIT, Bhopal
India
Defensive programming techniques are diminutive and convenient that saves testing time and unpredictable errors at a level. Programs written through defensive programming are as bug-free as possible, understandable with clear explanations and handle unexpected input in a predictable way.

Defensive Programming Techniques are also effectively used to enforce a strong security policy. A security policy is a simple set of rules and practices to develop secure coding to protect sensitive and critical system resources. Attackers may infringe these implicit or explicit security policies through exploiting set of conditions.

PHP was admitted to be the best scripting language for web development. Wikipedia is written in PHP. It is an open source which enables fast implementation of complex solutions. PHP is a platform independent scripting language. Security unconscious developer remains vulnerability in script which also entails defensive programming techniques.
II. PHP Vulnerabilities
In previous years few well known sites such as Twitter, Facebook, MySpace, and Orkut have been affected by vulnerable code. The attacker may exploit PHP vulnerabilities to execute external scripts through manipulating URL parameter, unauthorized access of server and steal sensitive information. Source of PHP vulnerabilities are potential security flaws like imprecise combination of PHP settings, error message displayed to end user, unexpected and unintended input string, silly mistakes in snippets. To demonstrate the severity of PHP vulnerability following scripts are identified and implemented.

A. Spoofed Mail through Exploiting PHP Vulnerability
PHP script facilitates the web programmers to send email. Poor written PHP Web Application may result in sending the fake mail. PHP script shown in Fig. 1 provides a convenient way to send email through mail server. Firstly it fetches header information from the web mail application. Secondly pass these values as an argument to predefined PHP function ‘mail()’ to send E-mail.

[image: image1]
Figure 1. PHP script to send mail

The programmers embedded this script in the web page/site for various purposes such as to send acknowledgment or distribute the documents to end user through email. If the programmer uses GET method to pass arguments of mail function, it will be visible in query string part of URL which is shown in Fig. 2. The fake mail may easily be sent through manipulating the parameters of above mention URL.
B. Remote File Creation(RFC)
RFC is the vulnerability for manipulating the Root directory of server through triggering unauthorized operating system command in vulnerable Web Application. Vulnerable PHP Script to find the IP address of the domain name has been depicted in Fig. 3. End user enters the domain name into input field which passed to PHP script through GET or POST method.
This script firstly concatenates the ping command with domain name and then passes to system function as the parameter. System function executes these strings through command line interface (CLI). CLI for windows provides multiple execution of command within a single line using ‘&’ operator.

Malicious user may enter domain name and command with ‘&’ into input field to execute the commands. For example end user enters value ‘domain.com & echo.> filename.php’ into input field, which returns the IP address of domain.com and creates a ‘filename.php’ file into www directory of the server.

This attack is launched due to the improper sanitization of input, poor written code and allocating the same privileges to command introduced by the server. However, hacker may leverage privileges of the server to access root directory of server or to damage files and directories.

[image: image2]
Figure 2. URL having arguments of mail function in query- part

[image: image3]
Figure 3. PHP Script to map domain to IP address

C. Remote File Inclusion(RFI)

Remote File Inclusion penetrates Web Application through manipulating URL. It allows the attacker to execute a malicious file on a server. RFI exploits the two vulnerabilities, first is improper sanitization in Web Application and second is file inclusion enabled on server. Most RFI attacks are built on the server-side scripting language like PHP.

PHP provides the functionality to insert and evaluate additional files within a script through ‘include’, include_once, ‘require’, and require_once statements. This functionality required ‘allow_url_include’ option must be enabled which is by default enabled since PHP 5.2.0. Vulnerable PHP script [3] to RFI attack shown in Fig. 4 directly pass the file provided as argument to the include statement.
Attacker may launch web pages existing outside the web server through setting the path as a request parameter value in query string of URL. These values are directly passed to the ‘include’ statement.

D. Information Disclosure

PHP provide functionalities for secure Web Application development but these functionalities have its own problems. Through exploiting these lacunas the attacker may reveal the system data and debug the information to form the plan of attack. There are many seemingly innocuous ways to disclose the valuable information such as-

1. Attacker may trick the Web Application to return back error messages. These error messages disclose the valuable information through which attacker may plan the attack. Mischievous user tries to access the web link that does not exist into server. It returns ‘not found’ error message with valuable information. Accessing the link like ‘www.indianrail.gov.in/anyPage’ returns an error message ‘Apache/2.2.15 (Red Hat) Server at www.indianrail.gov.in Port 80’. Vulnerabilities related to web server’s platform are available on web sites like securityfocus.com.
2. ‘php.ini’ file is used to store the configuration settings of PHP. Proper configuration setting such as ‘allow_url_include’ and ‘safe_mode’ are important for security perspective. This file may easily be accessed and defaced through text editor. Attacker having appropriate privileges may expose this file through executing script and commands without victim’s knowledge.

[image: image4]
Figure 4. PHP script vulnerable to RFI

III. Attack Tree for PHP Application
Attack trees are popularized as a tool to evaluate the security of complex system [2]. An attack tree is a structured, top-down, tree based representation of an attack scenario. In attack tree root node represents the attacker’s goal. The children of a node in a tree are refinements of the node’s goal into sub-goals. An attack is a path from a leaf to the root, and as it happens in any tree structure by definition, any sub-goal (i.e. node) in an attack tree can only have one parent-goal.

An attack tree represented in Fig. 5 has been developed to represent PHP vulnerabilities and attack patterns to compromise the Web Application. Each path from root to leaf node provides overview of attacker’s scenario to compromise the Web Application.

Root node of this tree represents that the Web Application may be compromised through the attack path of any leaf node to root node. Three sub nodes of the root node represent that the Web Application may be compromised by modifying the internal variables or configuration file and penetrate the application through injection attack.

AND-gate and OR-gate are similar meaning as in logical algebra. AND-gate indicates that both child nodes are necessary to achieve the parent node. Similar OR-gate indicates only one child is required to achieve the parent node.

Two leaf nodes from the left side of the attack tree represented in Fig. 5 are improper input validation and input pass through GET. Path from these nodes to root node represents attacker can compromised the Web Application if Web Application does not sanitize the input fields properly and input values goes send through GET method.

All path of tree may be represented as the Boolean logic. These Boolean logics represent the attack strategies. Attack tree is represented in Boolean Expression as-
Root = ((IIV ˄ IGET) ˅ (IGET ˄ ICMD)) ˅ (MWD ˄ TINC) ˅ ((ERG ˄ IR) ˅ (IR ˄ UV))
{Where-

Root
=
Root node of the tree

IIV
=
Improper input validation

IGET
=
Input pass through GET Method

ICMD
=
Input pass to command line

MWD
=
Modules in web directory

TINC
=
.inc file in text form

ERG
=
Register_Global enabled

IR
=
Input pass through $_Request

UV
=
Uninitialized variable

}
IV. Defensive Programming Techniques
 One of the objectives of defensive PHP programming is to write secure PHP script in terms so that it behaves in a predictable manner despite unexpected inputs or user actions. It is based on the idea that every program module is solely responsible for itself [7]. After web development, its code should be reviewed by security analysts for proper use of function.

Completely secure Web Applications are those running in a locked vault with no input and output facility [8]. Security is inversely proportional to facilitations provided by Web Application. Web developer and security experts try to make balance in security and facilitation of Web Application through minimizing the PHP vulnerabilities. Attention number of techniques towards defensive programming.

[image: image5]
Figure 5. Attack Tree for Web Application
A. Select Correct form Submission method
A variety of web attacks are due to the improper use of form submission method. PHP supports two most common form submission methods, GET and POST. GET is the default method for form submission [5]. It exposed the request parameters through query string portion of the URL. Improper use of this method potentially poses a security risk for Web Application. Attackers may easily manipulate the code passes through query string.

The code shown in Fig. 1 uses the idea put forward in Steve's 1993 definition of defensive programming “When software behave in a predictable manner despite unexpected inputs or user actions”. Hence it is recommended that programmer should prefer HTTP POST method for transmitting sensitive information rather than through GET method.
B. Restrict Access
It improves the defensive programming in perspective of proper file permission. The key concern of this technique is to properly implement the privileges of the web server and prohibits the illegal access of configuration files. Attacker may launch the attack through altering the setting of configuration file. So it is recommended that data files, scripting pages and configuration files should be managed separately. The configuration file should not keep in the root directory of the server.

In particular cases where it is mandatory to put these files into root directory the defensive programming principle of least privilege may be enforced through putting the following script in httpd.conf file in Apache server-
 SHAPE * MERGEFORMAT

C. Configure PHP.ini File
PHP.ini directive such as ‘register global’ is used to register the GET, POST, Cookie and Server variables as a global variable. Attacker may manipulate the execution of PHP script through manipulating the value of global variables. Register global directive might be enabled due to two reasons. First reason is unintentional coding errors. Second reason is developer enabled it intentionally because another application on the same server needs to be enabled.

With respect to achieve defensive programming goal of reducing software bugs, make sure all variables should be initialized during development. Uninitialized variables might be scrutinized by setting error reporting to E ALL or E ALL | E STRICT. Also set PHP.ini file as

· Disable allow_url_fopen in php.ini by setting it to 0

· Enable safe_mode and set open_basedir restrictions

· Hide Configuration files like PHP.ini and allocate restricted access.
D. Intelligent PHP script
Main goal of defensive programming is to write secure code. Intelligent PHP script is the techniques to write PHP scripts in respect to minimize PHP vulnerabilities. PHP supports inserting additional files within script at run time through ‘include’, include_once, ‘require’, and require_once statements. The key concept of this technique is to not pass any input directly to these statements. Write intelligent source code through secure logic which prevents passing input values directly to these statements. Modified logic to prevent from direct input passing is representing in Fig. 6.
E. Input Validation Securely
Another defensive programming technique to write secure code is proper input validation. Ensure that user input is properly validated/ sanitized prior to the first use. It achieves defensive programming goal of ‘secure programming validate data for correct type, length, and syntax’. Proper input validation protects application from buffer overflow attack and injection attack. Defensive programming practice of string and numeric validation is as follows.

PHP have ‘ctype-extension’ to validate string contents. Logic for string validation is presented in Fig. 7. This code accepts desired input from uncontrolled source.

[image: image7]
Figure 6. Script prevents direct input passing to include statement
 SHAPE * MERGEFORMAT

Figure 7. Script to validate string

Remember that data passed to PHP through GET or POST method treat as a string. Passing string in place of integer does not only provides unexpected output but also creates a loophole. Casting is very easy defensive programming concept to ensure variables do in fact contain numeric values. Logic for numeric validation is presented in Fig. 8.
F. Prevent Error Disclosure from End User
This defensive programming technique relies on the fact that they do not disclose unnecessary information while ensuring risk including crashing or encountering an error event. Error messages are inevitable to aware instantly about the problem in development environment. By default PHP through information about the error to determine the appropriate response. In few cases error disclosed privileged information like File path, Un-initialized variables and sensitive function’s argument such as passwords etc.
PHP errors could be undesirable to display end user, with respect to security and defensive programming. After the development it should disable error messages displaying on the screen and enables error logging for production. PHP provides ini_set() function to change the error and logging settings such as-

· ini_set(“display_errors”, FALSE);

· ini_set(“log_errors”, TRUE);

If error reporting is a necessary set up for the application logic then default error messages should be avoided. PHP allows the setting of custom error handlers via the set_error_handler() function. It returns the text message in place of error number and sensitive information disclosure. Three types of errors that can be triggered by the developer are E_USER_NOTICE, E_USER_WARNING, E_USER_ERROR [4]. Also should disallow directory listings through disable the following-

· Disable PHP identification header through setting ‘expose_php =off’

· Disable Apache identification header ‘ServerSignature=off’

· Avoid obvious names for restricted control panels

[image: image9]
Figure 8. Numeric validation
V. Conclusion
This paper presents hazards lurking within PHP script and proposes an effective way of writing secure code based on the defensive programming approaches. The secure code will assist to protect from coding vulnerabilities, loss of services, compromise of confidentiality and damage to the systems. The objective however is to encourage the web programmer to follow the secure coding style. Future work will be focused on wider experiments involving large set up, PHP vulnerabilities, and case studies.
References

[1] Internet Security Auditors, S. L.: MX Injection- Capturing and Exploiting Hidden Mail Server. December 2006[Online]. Available: http://www.webappsec.org/projects/articles/121106.pdf [Accessed: 12 March 2014].

[2] Barbara Kordy et al., “Attack-defense trees” Proc. of FAST 2010, Published by Oxford University Press, Vol. 24, No. 1, June-2012, DOI: 10.1093/logcom/exs029.

[3] Robert Auger: Remote File Inclusion [Online]. Available: http://projects.webappsec.org/w/page/13246955/Remote%20File%20Inclusion [Accessed:22 February 2014].

[4] Error Handling [Online]. Available: http://www.pearsonhighered.com/assets/hip/us/hip_us_pearsonhighered/samplechapter/0672325616.pdf [Accessed: 22 April 2014].

[5] Book: Brain Chess and Jacob West “Secure programming with static analysis”, 9th Chapter “Web Applications”.

[6] Description of core php.ini directives [Online]. Available: http://www.php.net/manual/en/ini.core.php [Accessed: 13 March 2014].

[7] Manuel Lemos “8 defensive programming best practices to prevent breaking your sites - PHP Classes blog” [Online]. Available: http://www.phpclasses.org/blog/post/65-8-defensive-programming-best-practices-to-prevent-breaking-your-sites.html [Accessed: 22 April 2014].

[8] Sachin Khanna, “Application security starts with the developer” [Online].Available:http://www.networkmagazineindia.com/200703/vendorvoice01.shtml [Accessed:17 April 2014].
About Authors:
 SHAPE * MERGEFORMAT

International Journal of Advances in Computer Networks and Its Security– IJCNS

Volume 4: Issue 2 [ISSN: 2250-3757]

Publication Date : 25 June 2014

<?php

$headers = 'From: ' . $_GET['from'] . "\r\n" .

'Reply-To: ' . $_GET['replyto'] . "\r\n";

$mail = mail($_GET['to'], $_GET['subject'], $_GET['message'], $headers);

?>

International Journal of Advances in Computer Networks and Its Security– IJCNS

Volume 4: Issue 2 [ISSN: 2250-3757]

Publication Date : 25 June 2014

http://my_domain.com/fake%20mail.php?to=reciever.mail%40gmail.com&from=fake.mail%40gmail.com&replyto=reciever.mail%40gmail.com&subject=Testing&message=Hiii+I+am+sending+test+mail

<?php

 ……….

 ob_start();

 system('ping ' . $_GET['user']);

 $contents = ob_get_contents();

 ob_clean();

 ……….

?>

<?php

 ……….

 $incfile = $_REQUEST["file"];

 include($incfile.".php");

 ……….

?>

International Journal of Advances in Computer Networks and Its Security– IJCNS

Volume 4: Issue 2 [ISSN: 2250-3757]

Publication Date : 25 June 2014

Application

Penetration

Modification in

Internal Variables

Configuration

File Modification

Web Application Compromised

Modules in Web Directory

‘.inc’ file in Text Form

Script Execution

Command Execution

Improper

Input

Validation

Input Pass to Command line

Input Pass through GET

Uninitialized Variable in code

Register_Global Enabled

Input Strings pass through $_Request

International Journal of Advances in Computer Networks and Its Security– IJCNS

Volume 4: Issue 2 [ISSN: 2250-3757]

Publication Date : 25 June 2014

<Files ~ "\.inc$">

 Order allow, deny

 Deny from all

</Files>

<?php

 ……….

 $incfile = $_REQUEST["file"];

 switch($incfile)

 {

	case "red":

	 include(red . ".php");

	 break;

	case "blue":

	 include(blue .".php");

	 break;

	default:

	 echo "File doesn’t exist";

	 break;

 }

 ……….

?>

if (!ctype_alnum($_GET['login'])) {

 echo "Only A-Za-z0-9 are allowed.";

}

if (!ctype_alpha($_GET['captcha'])) {

 echo "Only A-Za-z are allowed.";

}

if (!ctype_xdigit($_GET['color'])) {

 echo "Only hexadecimal values are allowed";

}

International Journal of Advances in Computer Networks and Its Security– IJCNS

Volume 4: Issue 2 [ISSN: 2250-3757]

Publication Date : 25 June 2014

<?php

 $clean = array();

 if ($_POST['num'] ==strval(intval($_POST['num'])))

 {

 $clean['num'] = $_POST['num'];

 }

?>

�

Divya Rish Sahu completed M Tech in Information Security and BE in Information Technology branch. He is currently pursuing his PhD in CSE department from Maulana Azad National Institute of Technology (MANIT), Bhopal, India.

�

Dr Deepak Singh Tomar obtained his BE, M Tech and PhD degrees in CSE department. He is currently Assistant Professor of CSE department at NIT Bhopal, India. His research interests are in web mining and cyber security. He has published more than 35 papers and guided 23 M Tech Thesis.

75

