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Abstract—This paper presents an analytical solution to the in-

plane compressive stiffness of elliptical leaf spring anti-vibration 

mounts (ELS). The accuracy of the proposed solution has been 

verified with the finite element analysis of the ELS 3D solid 

model. Parametric analysis conducted to study the effects of 

transverse shearing, ELS geometry, and compound material 

properties on the stiffness showed that the transverse shearing 

has negligible effect and led to the development of useful 

equations that simplify the determination of the spring stiffness. 

In addition, it was demonstrated that the stiffness is more 

sensitive to the outer radius as compared to other design 

parameters. 

Keywords—Elliptical leaf spring, anti-vibration mount, spring 
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I.  Introduction 
Shock and vibration isolation of sensitive equipment and 

machinery has become an integrated part of every engineering 
design. Vibrations may be from a natural source such as 
earthquakes, or from artificial sources such as those originated 
from operating machines. Such vibrations may result in 
equipment failure, structural damages, or human injuries, 
depending on the severity of the disturbing vibrations and the 
sensitivity of the equipment/facility. 

Tse and Lung (2000) carried out finite element analysis 
and theoretical study on large defections of composite circular 
springs and validated their results by experiments under 
uniaxial tension. The authors found that the spring stiffness 
increased with deflection and hard spring behavior was 
observed for the whole range of applied loads. The shear and 
longitudinal deformations effects were found to be negligible 
for configurations in which the elastic modulus to shear 
modulus ratios were not large and the radius to thickness ratios 
were large. In another study, Tse et al. (2002) considered the 
case of composite circular springs with extended flat contact 
surfaces and carried out finite element analysis and theoretical 
study on the new spring stiffness under unidirectional line 
loading and surface loading configurations. 
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The authors showed that the spring stiffness increases with 
the increase in width and thickness of the composite spring but 
decreases with the increase in inner radius. However, the 
spring stiffnesses were more sensitive to the change in spring 
radius than the thickness. 

Advanced Antivibration Components (AAC, Inc.) 
developed a series of shock and vibration mounts known as 
elliptical leaf spring antivibration mounts (Fig. 1). Their basic 
design employs two or more high range of tensile stainless 
steel ”U” formed leaves, situated at each end, forming an 
elliptical shape when joined together in the center portion with 
face plates. The spaces between the ”U” formed leaves are 
filled with a specially developed polymer (X-mounts) or 
stainless steel mesh (XM-mounts). The elliptical leaf spring 
mounting (ELS) was specifically designed for shipboard 
applications and is particularly suitable to protect marine 
equipment from shock due to underwater explosions. Later, 
the ELS application has been extended to isolate heavy 
machinery, air compressors, engine suspensions, sensitive 
equipment, etc. Features of the ELS mounts include the 
effective operation at at low natural frequency and ability to 
attenuate large shock inputs (Chan et al., 1995) 

The main objective of this investigation is to study the in-
plane vertical compressive stiffness of ELS mounts with and 
without damping compound (Fig. 1). Analytical solution is 
developed for the case of ELS without compound, this 
solution is based on Castigliano’s theorem. For the case of 
ELS with compound of different material properties, analytical 
solution is developed based on a statistical analysis of data 
generated from parametric finite element analysis of the ELS 
three-dimensional solid models. 

 

 

Figure 1.  3D view of the ELS mount 
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II. Analytical Solution 
Fig. 2 depicts one quarter of an ELS mount, the spring 

consists of two flat surfaces (I and II), one elliptic portion with 
outer radius ”Re” from center ”c” and internal radius ”Ro” 
from point ”o” (IV), one semi-circular portion with mean 
radius (Re − t/2) from center c (V), and a flat tapered portion 
(III) connecting portions II and IV, the upper surface of 
portion III is flat and the bottom surface is circular with radius 
”Ro” from point ”o”. With reference to Fig. 2, the following 
are the geometric features of the ELS mounts: Ro = Re + 0.8t, 
β=1.44, ρ= 0.28, γ=36.8

o
, and hf = 0.05 in (1.27 mm). 

In the development of the analytical solution to the ELS 
stiffness we consider the compound as if it is made of the 
same material of the leaves, Ef (without compound case, Ec = 
Ef = E). The ELS is subjected to the action of two equal and 
opposite line loads P acting along the vertical diameter of the 
spring (Fig. 3(a)). Since the radius of curvature of the spring is 
large enough than the thickness t, then the stress distribution 
across the thickness of the spring varies linearly, hence, in 
applying Castigliano’s theorem, the complement energy of 
flexure due to bending can be considered with sufficient 
accuracy. Due to symmetry, only one quadrant of the ELS 
need to be considered (Fig. 3(b)). The bending moment M0 
acting on the A-A cross section makes the system statically 
indeterminate. This moment can be calculated using 
Castigliano’s theorem. Since the rotation δϕ corresponding to 
M0 is zero, we have 

 df = dU dM0 = 0  

in which U is the strain energy due to bending of the quadrant 
of the spring under consideration. 
To simplify the solution steps we divide the considered spring 
quadrant into five parts (Fig. 2), where the total strain energy, 
U will be the sum of all energies contributed by each part, that 
is: 

 U = UI +UII +UIII +UIV +UV  

Part I, [0, L1]: The strain energy contributed by this part is: 

 UI = (M1(x))2 2EI1
é
ë

ù
û

0

L1

ò dx  

where 

 M1(X) = P(X)-M0  

is the bending moment at distance x from the right face of part 
I, and: 

 II = Bt0

3 12  

is the second moment of inertia of the section at any distance x 
from the right face of part I. 

Part II, [L1, L]: The strain energy contributed by this part is: 

 UII = (M2(x))2 2EI2
é
ë

ù
û

0

L2

ò dx 

where the bending moment at distance x from the right face of 
part II is: 

 M2(X) = P(L1+X)-M0  

and the second moment of inertia 

 I2 = B(rt)3 12  

 

Figure 2.  Geometry of the ELS mount 

 

 

Figure 3.  ELS mount under compressive loads and its equivalent quadrant 
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Part III, [L, L + β t]: The strain energy contributed by this part 
is: 

 UIII = (M3(x))3 2EI3
é
ë

ù
û

0

bt

ò dx  

where 

 M3(x) = P(L+x)-M0 

and 

 I3(X) = B(h(x))3 12  

h(x) is the thickness of the tapered part (see Fig. 2), it is a 
function of the distance x starting from the right face of this 
part: 

 h(x) = rt + R0 - R0

2 - x2  

Part IV : θ in [0,π/2-γ]: The strain energy contributed by this 
part is: 

 UIV = (M4(q))3 2EI4
é
ë

ù
û

0

P 2-g

ò rdq  

where 

 M4(q) = P(L+bt)+Psin(q)(Re-Hq 2)-M0  

and 

 I4(q) = B(h(q))3 12  

H(θ) is the thickness of this part, it is a function of the angle θ 
(see Fig. 2): 


H(q ) = Re- s 2 + R0

2 - 2sR0 sin[arcsin(
s cos(q +g )

R0

+q +g )]
 

where 

 s = Ro -Re+ t  

Part V, θ in [π/2-γ, π/2]: The strain energy contributed by this 
part is: 

 UIV = (M5(q))3 2EI5( )(Re - t 2)é
ë

ù
û

P 2-g

P 2

ò dq  

where 


M5(q ) = M4(

P

2
-g )+ P[sin(q )(Re-

t

2
)- sin(

P

2
-g )(Re-

H(
P

2
-g )

2
)]
 

and 

 I5(q) = Bt3 12  

At this stage the bending moment M0 can be calculated from 
Eq.1 then substituted back into the strain energy expression 

(equation (2)) to calculate the vertical deflection,v: 

 dv =¶U ¶P  

The in-plane compressive stiffness, kv is then: 

 kv = P dv  

III. Numerical Analysis 
Finite element predictions of the vertical deflection of several 
ELS mounts were carried out. The antivibration mounts are 

made of stainless steel leaves (Ef = 200 GPa, f = 0.3). The 
outer and inner ”U” shaped leaves, having constant thickness 
hf = 0.05 in (1.27 mm), are riveted together at the open ends 
with face plates to form an elliptical shaped assembly. The 
space between the stainless steel leaves is filled with a 
polymer (epoxy resin in general) damping compound. 

Table 1 summarizes the geometric properties of the ELS 
mounts considered in this study. The width B of the springs is 
varied from 0.5 in (12.7 mm) until 4 in (101.6 mm). The 
elastic modulus of the compound material is varied to cover a 
wide range of possible filling: from Ec = 3 GPa (e.g., epoxy 
resin) until Ec = Ef (stainless steel filling or no compound). 
Poisson’s ratio of the compound material is found to have 
negligible effect on the vertical deflection of the spring, thus, 

it is kept constant at c = f. 

TABLE I.  GEOMETRY OF THE SELECTED ELS MOUNTS 

ELS# Re(mm) t (mm) L1 mm) L2(mm) t0 (mm) 

ELS1 43.43 11.91 30.48 10.79 6.20 

ELS2 52.07 11.91 32.38 6.35 6.20 

ELS3 76.83 19.85 44.58 0.0 10.31 

ELS4 32.89 9.21 20.04 3.71 5.40 

 

Finite elements defined by 20 nodes having 3 degrees of 

freedom per node are employed in the FEA. This type of 

element can tolerate irregular shapes and is capable to model 
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curved boundaries. Only linear analysis is employed for this 

study. All nodes along the line B-B at the bottom were fixed. 

Nodes along the line A-A at the top were subjected to a line-

loading and were constrained in the out-of-plane directions. 

IV. Results & Discussion 
The compressive stiffnesses obtained by theory and finite 

element analysis are listed in Table 2 for the case of Ec = Ef. It 
is observed that there is good agreements between theoretical 
and numerical results. However, small discrepancies of about 
6.2% are noted at relatively high stiffness where the spring 
width is the largest. Note that the transverse shearing effects 
are insignificant in these cases. 

Fig. 4 shows the stiffness-width relationship of the ELS 
mounts. In this study, the ELS width was varied from 0.5 in 
(12.7 mm) to 4 in (101.6 mm), while the remaining design 
parameters were kept constant. The stiffnesses of all ELS 
mounts increase linearly with the increase in spring width, B. 
Evidently, the ELS mounts with stainless steel compounds (Ec 
= Ef ) are stiffer, however, the rate of change in their stiffness 
is higher than the springs with softer compound materials (i.e., 
Ec < Ef ). Fig. 5 plots the variation of ELS stiffness with the 
outer radius, Re. In this study, the outer radius was varied from 
1.2 in (30.48 mm) to 4 in (101.6 mm) and the dependent 
parameter, Ro, was updated accordingly; Ro = Re + 0.8t, while 
the remaining parameters were kept constant. It is observed 
that an increase in the outer radius decreases the spring 
stiffness; an increase in the outer radius induces a quadratic 
decrease of the spring stiffness. 

To study the effect of spring length on the compressive 
stiffness, the lengths L1 of the face plate (total face plate 
length is 2 L1) and L2 of the extended flat surface were varied 
to cover a wide range of practical ELS mounts and the 
stiffness was recorded for every pair (L1, L2), the results are 
reported in Fig. 6. In this investigation, all parameters were 
held constant except for the pair (L1, L2). It is clear that the 
ELS stiffness is highly dependent on the length of the flat 
surfaces. For short L2, an increase in L1 reduces slowly the 
spring stiffness, and for long L2, an increase in L1 has little 
effect on the stiffness. However, for short L1, an increase in L2 
significantly reduces the spring compressive stiffness, but for 
long L1, an increase in L2 reduces the stiffness with a small 
rate (up to 1/4). When L2 = 0, slight increase in L1 reduces 
considerably the stiffness. 

The analytical solution of the stiffness developed in section 
3 deals only with the case of ELS mounts made of a single 
material. In addition, it is difficult to find an analytical 
solution to the case of ELS with a compound made of different 
material properties. However, the proposed analytical solution 
may still be useful to obtain empirical equations to the 
stiffness of ELS mounts with a compound made of a material 
different of that of the leaves. For this, a statistical analysis 
would be needed. 

Table 2 shows that the error in estimating the ELS stiffness 
increases with the width B, this is due to the fact that the 
analytical solution accounts only for bending effects. 

TABLE II.  THEORETICAL AND NUMERICAL ELS STIFFNESS (EC = EF ) 

ELS# 
B 

(mm) 

Theoritical 

(N/mm) 

Numerical 

(N/mm) 

Error 

(%) 

ELS1 

25.4 2146.38 2124.36 1.04 

50.8 4292.76 4361.29 -1.57 

76.2 6439.13 6693.00 -3.79 

101.6 8585.51 9060.43 -5.24 

ELS2 

25.4 1893.54 1878.36 0.81 

50.8 3787.09 3848.38 1.59 

76.2 5680.62 5911.91 -3.91 

101.6 7574.04 8001.92 -5.35 

ELS3 

25.4 3517.37 3581.53 -1.79 

50.8 7034.75 7253.74 -3.02 

76.2 10552.12 11066.35 -4.65 

101.6 14069.50 15005.10 -6.24 

ELS4 

25.4 4464.75 4447.01 0.40 

50.8 8929.51 9226.79 -3.22 

76.2 13394.26 14121.70 -5.15 

101.6 17859.01 18974.25 -5.88 

 

 
Figure 4.  Variation of the stiffness with spring width (Bo=12.7mm) 

 
Figure 5.  Variation of the ELS stiffness with outer radius 

Fig. 7 shows the variation of the normalized spring 
stiffness (kv/kv(Ec = Ef )) with the variation of the factor nE = 
Ec/Ef. The normalized stiffness increases with the compound 
material young’s modulus, Ec, and this variation is 
independent of the spring width, B. Shown in the same figure 
is the equation that fits the variation curve, which is: 
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 Kv @ Kv, nE = 0.765+0.259nE -0.0221 nE
é
ë

ù
û  

Even though in the analytical solution the error in 
estimating the ELS stiffness increases with the spring width, 
the analytical stiffness is still useful because the stiffness 
varies linearly with the spring width (Fig. 4). 

 

 
Figure 6.  Effect of the L1 and L2 on the stiffness of an ELS mount 

 
Figure 7.  Variation of ELS normalized stiffness with nE 

Fig. 8 shows the variation of the normalized stiffness 
(kv/kv(B = B0)) with the variation of the factor nB = B/B0, 
where B0 is chosen to be equal to 0.5 in (12.7 mm). It is clear 
that nE factor has negligible effect on the variation of the 
normalized stiffness. From the analytical solution, which is 
valid only for the nE = 1, that variation of the normalized 
stiffness is exactly linear and is equal to nB, however, from the 
numerical solution, which takes into account almost all 
possible effects, the variation of stiffness follows the power 
trend: 

 Kv KvnE=1

nB=1 @ 0.989nB

1.036 @ nB

1.036
 

Combining equations (23) and (24) yields: 

 Kv @ KvnE=1

nB=1nB

1.036 = 0.757+ 0.256nE -0.022 nE
é
ë

ù
û 



 
Figure 8.  Variation of ELS normalized stiffness with nB 

To avoid running FEA of complete 3D ELS solid models, 
the analytical stiffness provided by equation (22) can be used 
to calculate the stiffness of the spring with nE = 1 (i.e., Ec = Ef 
) and nB = 1 (i.e., any width B = B0), and by injecting the 
obtained value in equation (25) one can determine with 
sufficient accuracy the stiffness of the ELS with a compound 

of different material (nE 1) and different width (B  B0). 

V. Conclusion 
 

In this paper theoretical and numerical analyses on the in-
plane compressive stiffness of Elliptical Leaf Spring 
antivibration mounts under line-loading have been studied. 
The investigation led to the following conclusions: 

 

1. The transverse shear included implicitly in the three-

dimensional finite element analysis was found to 

have a negligible effect for practical design 

parameters. 

2. The compressive stiffness increases with the spring 

width and decreases with the outer radius, the face 

plate and extended flat surface lengths. Within 

practical values of face plate length, the ELS stiffness 

reduces with the increase of the extended flat surface 

length; 

3. The spring stiffness is more sensitive to the outer-

radius; doubling the outer radius decreases the 

stiffness more than three times, while doubling the 

length of the face plate reduces the stiffness up to a 

maximum of three times. 

4. In this study we developed a set of equations for the 

determination of the in-plane compressive stiffness of 

ELS mounts based on theoretical and numerical 

investigations. 
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