
Agile Requirements Engineering
 [Murdaca, C]

Abstract—The Agile Software Development Methodology is

fast becoming the more popular and eagerly embraced software

development methodology. It is underpinned by the Agile

Manifesto which clearly articulates the methodology’s underlying

principles and values. Requirements engineering is a key

component of any development life cycle, yet it has gained little

attention in the studies conducted in the Agile Movement. This

paper aims to introduce the key features of requirements

engineering in an agile setting and how requirements engineering

is carried out in two of the more popular agile methods Scrum

and Extreme Programming.

Keywords—agile, analaysis, development methodology,

requirements engineering

I. Introduction
The two main software development methodologies

employed across industry at present are Agile and Waterfall.

The Waterfall methodology is seen as the traditional, robust

and sequential development life cycle. Its great strength is

that it is supremely logical – think before you build, write it all

down, follow a plan, and keep everything as organized as

possible [1]. However its sequential nature means that it is

resistant to change. Changes to requirements and scope, are

hard to support and manage within a waterfall methodology.

Agile systems development methods emerged as a response

to the inability of previous plan-driven approaches to handle

rapidly changing environments [2]. The Agile methodology is

seen as the new, fun, interactive as well as iterative

methodology that healthily manages change, and due to its

small iterative nature of development, provides tangible

deliverables more quickly than otherwise could be achieved in

a waterfall approach.

When it is appropriate, an iterative, agile methodology is

preferred because business stakeholders are more likely to get

what they really want when the solution comes through a

process of trial-and-error rather than from abstract

preconception of what the requirements might be [3]. Due to

the ever changing and fast paced nature of development

environment’s today, the need to get to market quickly and

efficiently is making the agile methodology more popular and

therefore more commonly the methodology of choice.

There are a number of agile methodologies that are

employed across the industry at present. It is an exciting and

ever changing landscape that continues to evolve. A great

deal of focus has been placed on new concepts that agile

methods have introduced to the project life cycle, however

little attention has been given to requirements engineering.

Murdaca, C

MATHS I C

GPO BOX 1771 SYDNEY NSW 2001, AUSTRALIA

The objective of this text is to review the role of

Requirements Engineering in two of the most popular Agile

Methods, Scrum and Extreme Programming.

The remainder of this text will be set out as follows.

Section 2 will review The Agile Manifesto. Section 3 will

introduce and define key agile concepts. Section 4 introduces

the concept of an Agile Method and some of the more

commonly employed methods in use today. Section 5 reviews

the benefits of employing agile methods. Section 6 looks at

the role of requirements engineering in a software

development lifecycle and the role it plays in two of the more

popular agile methods; Scrum and Extreme Programming.

Section 7 draws the conclusion.

II. The Agile Manifesto
In 2001, seventeen keen agile enthusiasts came together to

brainstorm and ultimately develop a Manifesto for Agile

Software Development, or as it is commonly referred to as the

Agile Manifesto.

The Manifesto has become an important foundation of the

Agile Movement, in that it characterizes the values of Agile

Methods and how Agile distinguishes itself from traditional

methods [4]

At the core of the Agile Manifesto are the following four

underlying values [5]:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

The Agile Manifesto is also underpinned by the following

twelve underlying principles [5]:

5. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

6. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer’s competitive advantage.

7. Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

8. Business people and developers must work together

daily throughout the project.

9. Build projects around motivated individuals. Give

them the environment and support they need, and trust

them to get the job done.

10. The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

11. Working software is the primary measure of progress.

12. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 2

Publication Date : 25 June 2014

72

13. Continuous attention to technical excellence and good

design enhances agility.

14. Simplicity—the art of maximizing the amount of work

not done—is essential.

15. The best architectures, requirements, and designs

emerge from self-organizing teams.

16. At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly.

III. Key Concepts
 Agile methodologies introduce some interesting new

concepts that are not used within the traditional waterfall

methodology. Some of the key concepts that are at the heart

of agile methods are defined as follows [6]:

 Agile - refers to software development methodologies that

value and support evolving requirements through iterative

development, direct Customer/Developer communication and

collaboration, self-organizing cross-functional teams, and

continuous improvement through frequent inspection and

adaption.

Burn Down Chart - a simple, easy to understand graphical

representation of work remaining versus time remaining.

They are effective for communicating progress and predicting

when work will be completed.

Daily Stand-Up - a brief, daily communication and planning

forum, in which Agile teams come together to evaluate the

health and progress of the iteration. It is a tightly focused and

time boxed meeting where team members will focus on

answering the following three questions only:

1. What did I accomplish yesterday?

2. What will I commit to, or complete, today?

3. What impediments or obstacles are preventing me

from meeting my commitments?

Iteration / Sprint - a predefined, time-boxed and recurring

period of time (generally less than 6 weeks duration) in which

working software is created.

Product Backlog - a prioritized and estimated list of all

outstanding product/project requirements, features, defects and

other work items.

Story Points - unit-less measures of relative size assigned to

requirements for functionality. Allows the team to focus on

the pure size and complexity of delivering a specific piece of

functionality rather than trying to perfectly estimate duration

of time required for the completion of the functionality.

Task Boards –visual communication and planning tools that

are extremely useful for teams working in co-located

environments. Due to their intuitive and simple nature, tasks

boards provide a powerful means of measuring and

communicating iteration health and progress.

User Roles - describe the unique perspectives of the

different consumers that will interact with the working

software.

User Stories - simple, brief and concise statements, used to

describe customer software requirements, from a particular

users’ perspective.

Now that the key agile concepts have been introduced, the
next section will look at agile methods and some of the more
commonly employed agile methods in use in the industry at
present.

IV. Agile Methods
Agile methods encourage more-collaborative development

than do traditional approaches [7]. Agile methods generally

promote a disciplined project management process that

encourages frequent inspection and adaption, a leadership

philosophy that encourages teamwork, self-organization and

accountability, a set of engineering best practices intended to

allow for rapid delivery of high-quality software and a

business approach that aligns development with customer

needs and company goals [8]

There are numerous methods employed across the industry

today that are ‘agile’ in nature. Some of the most commonly

employed agile methods are listed below:

 Adaptive Software Development (ASD)

 Agile Unified Process

 Crystal (sometimes referred to as Crystal Clear)

 Dynamic Systems Development Method (DSDM)

 Extreme Programming (XP)

 Feature Driven Development (FDD)

 Kanban

 Lean Software Development

 Pragmatic Programming

 Scrum

The next section will review some of the key benefits of

agile methods in general.

V. Benefits
Various studies on agile methods have been conducted

across the industry and documented in published literature

such as [9], [10] and [11].

The key findings of these studies have been summarized,

and are detailed as follows:

 Business and technical risks addressed explicitly during

the initial inception and elaboration phases

 Changes can be incorporated more easily and

demonstrate business value more efficiently

 Customer satisfaction with opportunities to get and

give feedback

 Defects can be removed earlier

 Development practices are easy to adopt and work well

 Greater customer collaboration, leading to better

understanding of customer expectations

 Greater predictability of the project execution due to

known business and technical risks

 Greater support and opportunity to undertake beta

testing

 Increased interaction between the customer and the

development team

 Iterations provide smaller control units to program

managers for greater visibility and control

 More frequent testing is carried out

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 2

Publication Date : 25 June 2014

73

 Multidisciplinary work of the team leads to better

problem understanding

 Workable software can be delivered earlier and on a

more frequent basis

As shown there are numerous documented benefits of agile

methods, which further reinforce the growing popularity of the

methodology in the industry at present. However, one of the

key components to any development methodology is the

ability to elicit, document and manage requirements through

some formal or informal analysis activity. This formal or

informal analysis activity is more commonly referred to as

Requirements Engineering.

In the next section, we will review the changing nature of

requirements engineering, from a more traditional plan driven

approach in waterfall methodologies, to an iterative change

driven approach in agile methodologies.

VI. Requirements Engineering
Within a Waterfall approach to development, the majority

of requirements engineering will occur within the initial

Requirements Phase. All formal requirements engineering

activities will be conducted within this phase by the business

analyst(s). They will undertake requirements engineering

tasks such as:

 Eliciting

 Documenting

 Reviewing

 Obtaining Sign Off

 Maintaining

 Managing

 Tracing Through to End Deliverable(s)

Note the waterfall methodology is documentation heavy,

and hence many requirements engineering artifacts are

expected as deliverables from the business analyst. Some of

the artifact deliverables that will capture the business

requirements include, but are not limited to:

 Stakeholder Requirement Documents

 Business Requirement Documents

 Solution Requirement Documents

 Functional Specification Documents

 Process Maps

 Traceability Matrices

Although requirements engineering is isolated to the initial

phase in a waterfall methodology, it does not preclude that

requirements do not arise post this phase. Although every

endeavor will be done to ensure that all requirements are

captured in this phase, sometimes requirements will be missed,

or only identified later, in subsequent phases. When

requirements are identified in subsequent phases, the waterfall

methodology employs a change management process to

capture these requirements. The change management process

is utilized to formally investigate the scope, priority and real

business need for the requirement and the implications of the

requirement being met within the scope of the current or

subsequent project deliverables.

Requirements engineering within an agile methodology is

strikingly different. Agile by its very nature is not

documentation heavy and development is performed through

short, time-boxed iterations. Requirements engineering is still

a very important component. If requirements are not

identified and prioritized how can project deliverables be

articulated and therefore met? Requirements engineering in

Agile methods is not as formal, nor documentation heavy as in

Waterfall methods, however it is still a very important part of

the development life cycle.

In agile development methods, requirements engineering

processes are not centralized in a single iteration, nor is it

restricted to being conducted prior to development

commencing. It is more iterative and evolves throughout the

project lifecycle. After a streamlined planning, requirements

definition and solution phase is completed to get the project

underway, iterations of more detailed planning, requirements,

design, build and test take place in waves. This approach

allows for immediate modifications of the product as

requirements come into view [13].

As introduced in Section IV, there numerous agile methods

that are utilized in the industry at present. Two of the more

popular agile methods employed across the industry at present

are Scrum and Extreme Programming. Due to the varying and

informal nature of how requirements engineering is conducted

in an agile method, it is worth reviewing how requirements

engineering is conducted by a business analyst in two of the

more popular agile methods, Scrum and Extreme

Programming.

The next two subsections will now introduce the key

features key features and review how requirements

engineering is conducted in the two agile methods Scrum and

Extreme Programming.

A. Scrum
Scrum is one of the more popular agile methods. Scrum

structures development in cycles of work called Sprints (also

referred to as iterations). These sprints generally have

duration of between one to four weeks. The sprints are time

boxed, that is, they end on a specific date whether the work

has been completed or not, and are never extended [1]. At the

end of each sprint, a working increment of the software is

delivered [6]. Requirements engineering is performed and

captured within what is referred to as a product backlog. The

product backlog is a list of functional and non-functional

requirements, prioritized in order of importance to the

business, together with any issues, dependencies and

estimates.

The product backlog can be articulated in any way that is

clear and sustainable, though either Use Cases or User Stories

are often used to describe the product backlog items in terms

of their value to the end user of the product [14]. As

highlighted in [14], it is good practice and a valuable exercise

if five to ten percent of each Sprint is dedicated to refining the

product backlog, to ensure it is up-to-date, as the requirements

may need to change as the product deliverables continue to

evolve as each sprint is completed.

It is important, within the Scrum agile method, that

requirement engineering is performed at the start of the

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 2

Publication Date : 25 June 2014

74

project, and then continually during each sprint undertaken.

This will ensure that the requirements contained within the

product backlog are detailed, up-to-date, split into smaller

requirements were possible, and that associated estimations

are current and valid.

B. Extreme Programming
Extreme Programming (XP) is one of the more popular

agile methods in the industry at present. XP seeks to improve

software quality by focusing on technical excellence, while

improving project agility and responsiveness to changing

requirements by valuing small yet frequent, time-boxed

releases.

XP is underpinned by the following five key principles [6]:

1. Communication

2. Simplicity

3. Feedback

4. Respect

5. Courage

It is also characterized by the following six phases [15]:

1. Exploration

2. Planning

3. Iterations to First Release

4. Productionising

5. Maintenance and Death

Extreme Programming advocates requirements engineering

throughout the development life cycle in small, informal

stages [12]. Similar to other agile methods, documentation in

XP is kept to a minimum and as such the main form of

documenting requirements in XP is undertaken via user stories

and acceptance test cases [16].

The next section will summarize this text and draw the

conclusion.

VII. Conclusion
Requirements engineering is the critical initial phase within

the waterfall development methodology. It employs a very

structured and formal approach to eliciting, documenting and

managing requirements. As agile methods prove ever more

popular it is clear that requirements engineering still plays a

critical part in the development life cycle. In agile methods,

requirements engineering is not centralized in a single

iteration, nor is it restricted to being conducted prior to

development commencing. It is more iterative and evolves

throughout the project lifecycle.

There are various agile methods currently employed in

industry at present, they all have their pros and cons, however

they are all founded on the underlying principles and values of

the Agile Manifesto. Both these methodologies are focused on

short, incremental, iterations that offer small incremental

product tangible deliverables at the end of each iteration.

Neither method employs a formal requirements engineering

process. However requirements engineering performs a

valuable role in both methods.

Requirements engineering in Scrum and XP is performed

both at the start of the project, and iteratively throughout the

sprints / iterations undertaken. Neither method employs a

formal framework for documenting these elicited

requirements. However given the emphasis on smaller, faster

and more visible deliverables to customers in an agile

framework, it is not surprising that the preferred technique for

documenting and communicating requirements in the two

methods is very similar, as they are captured through

Acceptance Test Cases, Use Cases and User Stories. This

allows requirements to more easily adapt and evolve during

project iterations. This is in sharp contrast to the more formal

requirements analysis phase conducted within a waterfall

methodology, whereby changes to requirements post this

phase is managed via a change management process.
As shown in this text, it is clear that although the approach

employed for requirements engineering differs between
Waterfall and Agile Methodologies, it is clearly similar within
different Agile Methods.

References
[1] Deemer, P, Benefield, G, Larman, C, Vodde, B The Scrum Primer 2010

[2] Highsmith, J Agile Software Development Ecosystems, Addison-Wesley,

Boston, USA 2002
[3] Podeswa, H, A Practical Guide to Requirements Gathering Using the

Unified Modeling Language, Course Technology CENGAGE Learning,

Boston USA 2010
[4] Cohen, D, Lindvall, M, Costa, P An Introduction to Agile Methods,

Advances in Computers, Vol 62, pp 1 – 66 2004

[5] The Agile Manifesto www.agilemanifesto.org
[6] Davis, S, The Agile Glossary of Terms, WhitePaper, 2010 Davisbase

[7] West, D, Grant, T Agile Development: Mainstream Adoption Has

Changed Agility, Jan 2010
[8] Kaur, R, Choudhary M, Mehta, R, Agile Process: An Enhancement to

The Process Of Software Development IJCSNS International Journal of

Computer Science and Network Security, Vol 12, No 7 July pp 101 –
106 2012

[9] Abrahamsson, P, New Directions on Agile Methods: A Comparative

Analysis, Proc. 25th Int’l Conf. Software Eng. (ICSE 03), IEEE CS

Press, 2003, pp. 244–254.

[10] Cohen, D, Lindvall, M, Costa, P An Introduction to Agile Methods,
Advances in Computers, Vol. 62: Advances in Software Engineering,

M.V. Zelkowitz, ed., Elsevier, 2004, pp. 1–66.

[11] Dybå, T and Dingsøyr, T Empirical Studies of Agile Software
Development: A Systematic Review, Information and Software

Technology, vol. 50, nos. 9–10, 2008, pp. 833–859

[12] Cao, L, Bamesh B, Agile Requirements Engineering Practices: An
Empirical Study, IEEE Software 2008 pp 60 – 68

[13] Hass, K, B, The Blending of Traditional and Agile Project Management,

PM World Today May 2007 Vol IX Issue X

[14] Sutherland, J, Schwaber, K, The Scrum Papers: Nuts, Bolts, and Origins

of an Agile Framework 2011

[15] Beck K. 2000. Extreme Programming Explained, Addison-Wesley

Pearson Education, Boston.
[16] Duncan, R, The Quality of Requirements in Extreme Programming,

Software Development Methodologies, June 2001

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 1 : Issue 2

Publication Date : 25 June 2014

75

