
28

Regression Test Framework based on Extended

System Dependence Graph for Object-Oriented

Programs
Samaila Musa

Abu Bakar M.D. Sultan

Azim Abd Ghani

Dr. Salmi Bahrom

Abstract - This paper presents a regression testing

framework for object-oriented software based on extended

system dependence graph model of the affected program.

The approach is based on semantic analysis of the code. The

goal is to identify changes in a method’s body due to data

dependence, control dependence and dependent due to

object relation such as inheritance and polymorphism. To

find the affected statements due to changes in the program,

we used affected statement as slicing criterion to performed

slicing on the constructed graph. The methods affected are

determined by analysis of the ESDG based on the affected

statements. Test cases that execute the affected methods are

selected from an existing test suite. New test cases are

generated when necessary. The selected test cases are

prioritized by assigning weight to the affected methods. A

case study will be reported to provide evidence of the

feasibility of the approach and its benefits in increasing the

rate of fault detection and reduction in regression testing

effort.

 Keywords-regression testing, regression test

framework, regression test case prioritization, system

dependence graph.

I. Introduction
Software maintenance activity is an expensive

phase account for nearly 60% of the total cost of the

software production [1]. Regression testing is an important

phase in software maintenance activity to ensure that

modifications due to debugging or improvement do not

affect the existing functionalities and the initial requirement

of the design [2] and it almost takes 80% of the overall

testing budget and up to 50% of the cost of software

maintenance [3].

Samaila Musa
Abu Bakar M.D. Sultan

Azim Abd Ghani

Salmi Bahrom
Faculty of Computer Sci. & Info. Technology, University Putra Malaysia

Malaysia

Regression test selection is a way that test cases are

selected from an existing test suite, that need to be rerun to

ensure that modified parts behave as intended and the

modification have not introduce sudden faults. Reduction in

the number of test cases to be used in testing modified

program means reduction in the cost associated with

regression testing.

 Identifying test cases that exercised modified parts

of the software is the main objective of regression test

selection. The challenge in regression testing is identifying

and selecting of best test cases from the existing test suite,

and selecting good test cases will reduce execution time and

maximize the coverage of fault detection.

Regression testing approach can be based on source

code, i.e., code-based and based on design, i.e., design-

based, many of them were proposed by the researchers. The

more safe and easy to make are the approaches that generate

the model directly from the source code of the software.

Researchers have proposed many code-based

approaches [3, 4, 5, 6, 7] by identifying modifications in the

level of source code, but the authors focus on the

procedural-based programming which are not suitable in

object-oriented programming widely today used in software

development. Other researchers [2, 8, 9, 10, 11, 12,

13,16,17] address the issues of object-oriented programming

but do not consider some basic concept of object-oriented

features (such as inheritance, polymorphism, etc.,) as a

bases in identifying changes.

An approach was presented in [13] based on the

concept of Control Call Graphs (CCG), reduced form of

Control Flow Graph (CFG). This graph is a directed in

which the nodes represent decision points, an instruction or

a block of statements. An arc in the graph linking nodes Ni

to Nj means that the statements corresponding to node Ni

will be executed first, followed by the statements in node

Nj. The control flow (method calls and distribution of the

control flow) in the system are provided by CCG. The

technique is more precise and captures the structure of calls

and related control than the traditional Call Graph (CG).

However, it is difficult to extracting information about

changes in the source code that may not have direct impact

on the method call.

A heuristic-based test case prioritization approach

for object-oriented programs was presented in [17]. The

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

29

technique was based on analysis of dependence model, as

improvement for technique presented in [16]. The authors

constructed a dependence model of a program from its

source code, and when the program is modified, the model

is updated to reflect the changes. The test cases that covered

the affected nodes are selected for regression testing. The

selected test cases are then prioritized by assigning initial

weights of 1(one) to the affected nodes. The weights of the

affected nodes in the selected test cases covered by previous

execution of a test case are reduced to 0.5. But, the weight

0.5 may have effect in the selection if the numbers of

covered nodes are many in a test case, which may result in

selection of test case that is not much relevant, which will

result in increase of regression testing time.

In this paper we present an approach that will select

best test cases from existing test suite T used to test the

original program P by using Extended System Dependence

Graph (ESDG) [15] as an intermediate to identify the

changes in P, at statements level. Identification of changes

using this kind of graph will leads to précised detection of

changes. The changed statements will be used to identify

affected methods, and test cases that execute the affected

methods are selected for regression testing. The selected test

cases will be prioritized based on reduction in weight of the

affected methods in order to increases the rate of faults

detection. This approach will reduce the cost of regression

testing by reducing the number of test cases to be used in

testing the modified program.

Extended System Dependence Graph (ESDG) [15]

is a graph that can represents control and data dependencies,

and information pertaining to various types of dependencies

arising from object-relations such as association, inheritance

and polymorphism. Analysis at statement levels with ESDG

model helps in identifying changes at basic simple statement

levels, simple method call statements, and polymorphic

method calls.

The rest of this paper is organized as follows. In the

next section, we provide regression testing. Section 3

describes Extended System Dependence Graph (ESDG). In

section 4, we present our test selection framework. Section 5

concludes this paper.

II. Regression Testing
Regression testing is a software testing activity

normally conducted after software is changed, and its helps

not only to ensure that changes due to debugging or

improvement do not affect the existing functionalities but

also the changes do not affect the initial requirement of the

design. Regression test selection is an activity that select test

cases from an existing test suite, that need to be rerun to

ensure that modified parts behave as intended and the

modification have not introduce sudden faults.

Regression test selection technique will help in

selecting a subset of test cases from the test suite. The

easiest way is that, the tester simply executes all of the

existing test cases to ensure that the new changes are

harmless and is referred as retest-all method [9]. It is the

safest technique, but it is possible only if the test suite is

small in size. The test case can be selected at random to

reduce the size of the test suite. But most of the test cases

selected randomly can result in checking small parts of the

modified software, or may not even have any relation with

the modified program. Regression test selection techniques

will be an alternative approach.

Selected test cases that execute both the modified

portion of the program and the portions that are affected by

these modifications are referred to as modification revealing

test cases. Regression test selection involves the selecting

and running a reduced subset of test cases from the initial

test suite, in order to verify the behavior of modified

software and provide confidence that part of the software

affected by modifications are correct. This can results to

reduction in the cost of regression testing and also software

maintenance.

Problem definition:

Let P be a certified program tested with test suite T,

and P’ be a modified program of P. During regression

testing of P’, T and information about the testing of P with T

are available for use in testing P’.

To solve the above problem, Rothermel and Harrold [3]

have outlined a typical selective retest technique that:

- Identify changes made to P by creating a mapping

of the changes between P and P’

- Use the result of the above step to select a set T’

subset of T that may reveal changes-related faults

in P’

- Use T’ to test P’, to establish the correctness of P`

with respect to T`

- Identify if any parts of the system have not been

tested adequately and generate a new set of test

case T’’.

- Use T’’ to test P`, to establish the correctness of P`

with respect to T``

- Create T```, a new test suite and test history for P`,

from T, T`, and T``.

III. Extended System
Dependence Graph

In this section, we describe the dependency graph

based on the approach presented in [15]. ESDG [15] was

used to model object-oriented programs and is an extension

of System Dependence Graph (SDG) [14] used to model

procedural programs.

Extended System Dependence Graph (ESDG) [15]

is a graph that can represents control and data dependencies,

and information pertaining to various types of dependencies

arising from object-relations such as association, inheritance

and polymorphism. Analysis at statement levels with ESDG

model helps in identifying changes at basic simple statement

levels, simple method call statements, and polymorphic

method calls.

ESDG is a directed, connected graph G = (V, E),

that consist of set of V vertices and a set E of edges. A

vertex v represents one of the four types of vertices, namely,

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

30

T

P

P`

statement vertices, entry vertices, parameter, and

polymorphic vertices. An edge e represent one of the six

edges, namely, control dependence edges, data dependence

edges, parameter dependence edges, method call edges,

summary edges, and class member edges.

A. ESDG Vertices
- Statement vertices: Are program statements present in the

methods body. Statement vertices are of two types: call

vertices and simple statement vertices. Call vertices are used

to represent method call statements, and all other statements

such as conditionals, loops and assignment in the program

are represented by simple statement vertices.

- Parameter vertices: Are used to represent parameter

passing between a caller and callee method. They are of four

types: formal-in, formal-out, actual-in, and actual-out.

Actual –in and actual-out vertices are created for each call

vertex and create formal-in and formal-out vertices for each

method entry vertex.

- Entry vertices: Methods and classes have entry vertices.

A class entry vertex and a method entry vertex represent an

entry into a class and an entry into a method respectively.

- Polymorphic choice vertex: it is used to represent

dynamic choice among the possible bindings in a

polymorphic call.

B. ESDG Vertices
- Control dependence edge: It is used to represents control

dependence relations between two statement vertices.

- Data dependence edge: It is used to represents data

dependence relations between statement vertices.

- Call edge: It is used to connect a calling statement to a

method entry vertex. It also connect various possible

polymorphic method call vertices to a polymorphic choice

vertex.

- parameter dependence edge: It is used for passing values

between actual and formal parameters in a method call. It is

of two types: parameter-in and parameter-out edges.

- Summary edge: It is used to represents the transitive

dependence between actual-in actual-out vertices.

- Class member edge: It is used to represents the

membership relation between a class and its methods. It is

used to connect a class entry vertex to a method entry

vertex.

Figure 1 represent the different graphical symbols used

represent the different types of vertices and edges. In figure

2 and figure 3, we present a program example and its

ESDG.

Fig. 1. Graphical symbols used to represent the different types of vertices

and edges in ESDG.

IV. TEST CASE SELECTION

Fig 2. Example of a class

IV. Regression Test Framework
This paper presents an approach for the selection of test

cases T` from the test suite T to be used in testing the

modified program P`. Figure 4 illustrate the various

activities of the test case selection framework.

Figure 4. Framework of our approach

 Method/statement vertex

 Class entry vertex

parameter edge call edge

class member data edge

summary edge control edge

 Parameter vertex

Test coverage

generation

<CoveraInfo>

ESDG

Condtructor

<ESDG Model>

Identify

changes

<changed>

 ESDG

Updates

<M“>

Affected

methods

Identification

<affectedMet

hods>

Teat case

selection

<T`>

Teat case

Prioritisati

on

<PriorTCas

e>

CE1 public class Tsum {
S2 public static int i;
S3 public static int sum;
E4 public void TSum() {
S5 sum =0;
S6 i = 1;

 }

E7 public void calculate() {

S8 while (i<10) {

S9 sum = add(sum, i);

S10 i = add(i, 1); }

S11 System.out.println("sum =

" + sum);

S12 System.out.println
("i = " + i);

 }

E13 static int add (int a, int b) {

S14 return(a+b);

 }

 }

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

31

Our approach consists of the following phases:

A. Identify Changes
The changes between P and the modified program P`

are identified in this step, via semantic analysis of the source

code of the software. A file named changes will be used to

store the identified statement level differences. This is

shown in Fig. 1 by the result of identify changes phase.

The scopes of the changes in our approach are

addition and deletion of object.

 Fig 3. Partial ESDG of the program in fig 2

1) Adding object:
 Adding object in ESDG can be identified by Identify

changes phase. Adding of object in object-oriented

programming can be addition of method call statements, or

simple statements such as conditionals, loops and

assignment statements in the program. Figure 5a (i, ii) and

figure 5b (i, ii) represent program P and its modified version

P` codes, and their corresponding ESDG of simple

statements addition respectively.

Figure 6a (i, ii) and figure 6b (i, ii) represent

program P and its modified version P` codes, and their

ESDGs of addition of method call statement.

In fig 5a i, statements (vertices) S2, S3, S4 and S5

are control dependence on E1 (method entry vertex).

Vertices S3, S4 and S5 are data dependent on S2, and S5 is

data dependent on S2, S3 and S4. In fig 5a ii, statement S4

and S5 are not data dependent on S2, but are on the added

statement S3a. The added statement S3a, is data dependent

on S2. Statement S3a is identify as the changes between P

and P`, and is saved as changed node.

Fig 5. Program P and its modified version P`, and their ESDG of simple

statement addition.

.

In fig 6aii, method call statement sum(int x, int y)

was added in S6a. fig 6bii represents the method call

statement added in the code in line S6a. Parameter edges

were drawn from Actual_in vertices of method call to

formal_in vertices of the called method. So also a parameter

edge is drawn from formal_out vertex to Actual_out vertex.

A simple call edge is drawn from the call statement S6a to

callee method entry node, and a control dependence edge

has been drawn from method entry vertex E6 to method call

statement vertex (S6a). Since the output of the S6a

statement is transitively dependent on the its Actual_in

parameters, summary edges will be drawn from Actual_in

vertices to Actual_out vertex.

Fig 6aii. Addition of method call statement in the code

2) Deleting of object:
An example of deletion of simple statement has been

presented in fig 7a, and in the case of deletion of method

call statement, we will used the code and ESDG in fig 6 (aii

and b). In fig 7aii, the deleted node is S4 marked by dash

line. The statement vertices S5 and S6 are data dependent on

S4, so before deleting S4, nodes S5 and S6 are identified by

conducting forward slices on the code. Then edges from

deleted node to nodes S5 and S6 are deleted and saved the

identified nodes as changed nodes, and also a data

CE1

E1 void m1() {
S2 int x = 1;
S3 int y = x + 2;
S4 int p = x * 6;
S5 System.out.print(x, y, p);
 }

5ai.

E1 void m1() {
S2 int x = 1;
S3 int y = x + 2;
S3a x = x+1; // added statement
S4 int p = x * 6;
S5 System.out.print (x, y, p);
 }

5aii.

5bi

5bii.

CE1 class A {
E2 Public int x, y;
E3 void A () {
S4 x = 5;
S5 y = 7; }

E6 void increment (y) {
S6a sum (y, 1); }// added
method call statement
E7 void sum (int x, int y) {
S8 x += y;
 }
 } // class

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

32

dependence edge from node S2 to the deleted node is

removed due to deletion of S4.

Fig 6b(i and ii). updated ESDG model for addition of method call statement

In fig 6aii, we assume the deleted method call

statement is S6a. To update the model by deleting the node

S6a in ESDG, first identify the changed nodes, i.e., nodes

that are control dependent or data dependent or dependent

due to object relation such as inheritance and

polymorphism, and saved these nodes in the file named

changes to be used later. Secondly, there is need to remove

all the parameter edges, the simple call edge, and control

dependence edge. Then the vertices are deleted.

Fig 7. Deletion of a simple statement.

B. Test Coverage Generation
Program P is instrumented at the method levels.

The code statements are executed with the original test suite

T and to write traces for each test case in order to generate

information pertaining to the specific methods that are

executed for each test case. The generation of the test

coverage information is perform once for a given program

during one testing cycle, and the activity will not be

repeated for the subsequent regression testing which will

saved time. The information generated in this stage is saved

in a file named coverageInfo for later use.

C. ESDG Model Constructor
ESDG model for the original program P is

constructed using a technique similar to [15], and was

described in section III.

D. ESDG Model Updates
The model constructed for P is updated using

information from changed file during each regression testing

to make it correspond to the modified program P` and the

updated ESDG model is denoted by M`.

E. Affected Methods identification
To identify the affected methods, a forward slice is

constructed on the updated model M` using the information

from changed file. Each change node in changed file is used

as slicing criterion to determine the affected nodes in each

method. The affected nodes stored in changed file are used

to identify the affected method. The affected methods are

methods that were affected directly by the modifications in

their body or as the result of control dependence or data

dependence or dependent as a result of object relation such

as inheritance and associations on the affected node from

the updated model M`, and denoted by affectedMethod.

F. Test Case Selection
Test cases that execute the affected methods in the

updated model M` are selected for regression testing, and

donated as T`.

G. Test Case Prioritization
The selected test cases T` will be prioritized based on

reduction in weight of the affected methods, and denoted as

PriorTCase.

V. Conclusion
A test case selection framework has been proposed in our

approach that selects test cases T` from test suite T to be

used for rerun in regression testing. The approach used

extended system dependence graph (ESDG) [15] to identify

changes at statement level of source code, store the changes

in a file named changed, and generate coverage information

for each test case from the source code. The changed

information are used to identify the affected methods, and

test cases are identify that will be rerun in regression testing

based on the affected methods. The selected test cases will

be prioritized based on reduction in weight of the affected

methods already covered by the previous execution in order

to increases the rate of faults detection The technique cover

the different important issues that regression testing

strategies need to address: change identification, test

selection, test execution and test suite maintenance.

A tool will be developed based on our proposed

framework to be used in object-oriented programs, and we

will compare results from our developed tool to measure the

preciseness, inclusiveness and rate of faults detection.

6bii.

CE1

7ai. code
E1 void m1() {
S2 int x = 1;
S3 int y = x + 2;
S4 x = x+1; // deleted stat
S5 int p = x * 6;
S6 System.out.print(x, y, p);
 }

7ai.

7aii.

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

33

References
[1] S. P. Roger, “Software Engineering: A practitioner’s

Approach”, Fifth Edition. McGraw-Hill Publisher, New
York, America.)

[2] G. Rothermel and M. Harrold. “Selecting regression tests for object-
oriented software,” International Conference on Software
Maintenance, pages 14–25, March 1994.

[3] G. Rothermel, , M.J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering
Methodology 6(2), 173–210 (1997)

[4] H. Leung and L. White, “A firewall concept for both control-flow and
data-flow in regression integration testing,” In Proceedings of the
Conference on Software Maintenance, pages 262–270, 1992.

[5] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. “On
regression testing of object oriented programs,” Journal of Systems
and Software, 32(1):21–40, January 1996.

[6] Y. Jang, M. Munro, and Y. Kwon, “An improved method of selecting
regression tests for C++ programs,” Journal of Software Maintenance:
Research and Practice, 13(5):331–350, September 2001.

[7] W. Lee, J. Khaled, and R. Brian, “Utilization of
extended firewall for object-oriented regression
testing,” Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), p 1-
4.

[8] G. Rothermel, M. Harrold, and J. Dedhia. “Regression test selection
for C++ software,” Software Testing, Verification and Reliability,
10(2):77–109, June 2000

[9] M. J. Harrold, J. A. Jones, T. Li, and D. Liang,
“Regression test selection for java software,” ACM
2001 1-58113-335-9/01/10 (2010), pp 312-326.

[10] W. S. A. El-hamid, S. S. El-etriby, and M. M. Hadhoud,
“Regression Test selection technique for multi-
programming language,” Faculty of Computer and
Information, Menofia University, Shebin-Elkom,
32511, Egypt (2009).

[11] B. Árpád, et al., “Code coverage-based regression test
selection and prioritization in webkit,” 2012 28th IEEE
International Conference on Software Maintenance
(ICSM 2012), p 46-55.

[12] W. Jin, A. Orso, and T. Xie, “Automated Behavioral
regression testing,” 2010 Third International
Conference on Software Testing, Verification and
Validation, pp 137-146.

[13] N. Frechette, L. Badri, and M. Badri, “Regression Test reduction for
object-oriented software: A control call graph based technique and
associated tool,” 2013, International Scholarly Research Network
Software engineering (ISRN Software Engineering 2013), pp. 1-10.

[14] S. Horwitz, T. Reps, and D. Binkley “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems, 12(1), January 1990, P 26–60.

[15] [15]. L. Larsen, and M. Harrold, “Slicing object-
oriented software,” In Proceedings of 18th IEEE
International Conference on Software Engineering,
(1996) 10.1109/ICSE.1996.493444, p 495-505.

[16] C. Panigrahi, and R. Mall, “An approach to prioritize regression test
cases of object-oriented programs,” JCSI Trans ICT (Springer) 2013,
doi:10.1007/s40012-013-0011-7.

[17] C. Panigrahi, and R. Mall, “A heuristic-based regression test case
prioritization approach for object-oriented programs,” Innovations
in Systems and Software Engineering (Springer) 2013,
doi: 10.1007/s11334-013-0221-z.

Samaila Musa was born in Talata Mafara,

Nigeria, in 1973. He holds a MSc in Computer

Science from Bayero University Kano(BUK),

Nigeria in 2009. His research focus is in

Software engineering particularly Software

Maintenance and Search-based Software

Engineering (SBSE). Samaila Musa currently is

a PhD student in Information System

Department, Faculty of Computer Science and

Information Technology, UPM

Abu Bakar Md. Sultan was born in Melaka,

Malaysia in 1965. He holds a PhD in Artificial

Intelligence from University Putra Malaysia

(UPM) in 2007. His research focus is in

Artificial Intelligence and Software

Engineering particularly Search-based

Software Engineering (SBSE). He has

published articles in conferences and various

journals related to SBSE. Associate Professor

Dr Abu Bakar Md. Sultan currently is the

Dean of Faculty of Computer Science and

Information Technology, UPM

Salmi Baharom. Salmi Baharom received the PhD

degree in computer science from the Universiti

Kebangsaan Malaysia, Malaysia in 2010. She is a

senior lecturer at the Information System

Department, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia.

Her research interests include specification-based

testing, software engineering education and

database design.

Abdul Azim Abd Ghani received the

BSc in mathematics/computer science

from Indiana State University in 1984

and MSc in computer science from

University of Miami in 1985.

He received the PhD in software

engineering from University of

Strathclyde in 1993. He is a Professor

in the Faculty of Computer Science

and Information Technology,

Universiti Putra Malaysia,

Malaysia

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 2
Publication Date : 25 June 2014

http://dx.doi.org/10.1109/ICSE.1996.493444
http://link.springer.com/journal/11334
http://link.springer.com/journal/11334

