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Abstract- The optimization of liquid column damper (LCD) 

system considering model parameter uncertainty is usually 

obtained by minimizing the performance measure obtained by 

the total probability theory without any consideration to the 

variation of the performance of LCD system due to parameter 

uncertainty. However, such a design method does not 

necessarily correspond to an optimum design in terms of 

maximum response reduction as well as its minimum 

dispersion. The present study is focused on robust design 

optimization (RDO) of liquid column vibration absorber 

(LCVA) system in seismic vibration control of structure 

considering uncertain but bounded (UBB) type system 

parameters. This involves optimization of LCVA parameters 

allowing uncertainty in the properties of the primary structure 

as well as ground motion parameters. The RDO is performed 

by minimizing the weighted sum of the nominal value of the 

root mean square displacement (rmsd) of the primary structure 

and its dispersion is minimized. The conventional interval 

analysis based bounded optimum solution is also obtained to 

demonstrate the effectiveness of the RDO approach.  A 

numerical study elucidates the effect of parameter uncertainty 

on the RDO of LCVA parameters by comparing the RDO 

results with the optimum solution obtained by solving usual 

interval optimization procedure.  

 

Index terms- Seismic vibration control, liquid column 

vibration absorber, bounded uncertain parameters, robust 

optimization. 

I.  INTRODUCTION 

The application of LCD to control the effect of wind and 

seismic induced vibration effect is quite known [1-3]. In fact, 

the optimal design of passive control devices like Tuned Mass 

Dampers (TMD) and LCD is well established [4, 5]. The most 

commonly used approach of damper parameter optimization is 

to consider the load like earthquake or wind actions as the 

only source of randomness. The loads are suitably modelled as 

a stochastic process in the standard random vibration theory 

and the stochastic structural optimization (SSO) is performed 

by considering the structural displacement covariance of the 

protected system as the performance measure. The approach 

assumes that all parameters except the load are unaffected by 

any source of uncertainty. A major limitation of such 

deterministic assumption is that the uncertainties in the 

performance-related decision variables cannot be included in 

the optimization process. But, the complete information about 

a dynamical system and its environment are never available, 

the system and excitation is not modeled exactly. Therefore, 

the design of LCD based on a single nominal model of the 

system may fail to create a control system that provides 

satisfactory performance. The efficiency of damper may 

reduce if the parameters are not properly tuned to the vibrating 

mode it is designed to suppress due to unavoidable presence of 

uncertainty in the system parameters. Hence, for an efficient 

design of damper system, uncertainty associated with 

excitation as well as modeling of structure should be explicitly 

taken into account. In recent years, the vibration control 

problem considering uncertain system parameters has attracted 

a great deal of interest. The optimal TMD design under 

uncertain parameters was introduced by Jensen et al. [6]. The 

RBDO for passive control applications was originally 

proposed by Papadimitriou et al.[7] in which the unconditional 

probability of failure of the primary structure is minimized for 

systems with probabilistic parameters uncertainties and 

stochastic excitation. May and Beck [8] introduce the concept 

of robust reliability against failure to serve as an important 

metric by which the quality of controlled systems can be 

judged. The unconditional failure probability obtained by the 

total probability theorem is defined as the robust failure 

probability. Taflanidis et al. [9] studied robust RBDO of liquid 

dampers based on the total probability theory concept 

considering random system parameters under earthquake 

excitation. Taflanidis et al. [10] presented a theoretical 

analysis of RBDO for passive or active structural control 

applications that optimizes a control system explicitly to 

minimize the probability of failure of structure. 

The studies on optimization of damper parameters 

considering model parameter uncertainty primarily apply the 

total probability theory concept to obtain the unconditional 

response or the failure probability of the system which is 

subsequently used as the performance measure. But, such 

design approach does not consider the possible dispersion of 

such performance. Hence, it is important to achieve a balance 

where an optimum design will also assure less sensitivity with 

respect to the variations of parameters due to uncertainty, 

thereby producing robustness in the design. The robustness is 
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generally expressed in terms of the dispersion of performance 

function from its nominal value. The dispersion is usually 

measured in terms of the variance and percentile difference 

[11]. Furthermore, it is of worth mentioning here that though, 

the probabilistic methods are powerful, the approach cannot 

be applied in many real situations when the required detailed 

information on the statistical variations of parameters is 

unavailable. The maximum possible ranges of variations 

expressed in terms of percentage of the corresponding nominal 

values of the parameters are only known and can be only 

modelled as uncertain but bounded (UBB) type parameters. In 

such situations, the interval analysis method in the framework 

of set theoretical description is used [12, 13]. However, the 

bounded solutions obtained by such approach are the worst 

case measures and has little importance for practical design. 

The robust design optimization (RDO) in which the bounds on 

the magnitude of uncertain parameters are only required will 

be a viable alternative. The concepts of RDO have been 

developed independently in different scientific disciplines and 

the developments in recent past are noteworthy [14-16]. 

However, there have been a few applications of RDO with 

respect to reduction of vibration levels of structures. Hwang et 

al. [17] have minimized the mean and variance of 

displacement at the first resonance frequency of an automobile 

mirror system with both stiffness and mass variation. Son and 

Savage [18] proposed a probabilistic approach of designing 

vibration absorber parameters to reduce both the mean and 

variance of the dynamic performance measure over the 

excitation frequency range.  Marano et al. [19, 20] studied the 

RDO criterion in probabilistic framework for use of TMD in 

seismic vibration control.  

The studies on the RBDO and RDO of TMD 

parameters optimization considering random system 

parameters are noteworthy. However, the same is not the case 

for liquid dampers, except a study by Taflanidis et al. [9] 

where the model parameter uncertainty is considered in the 

framework of the total probability theory concept. However, 

the optimization was performed without any consideration to 

the variation of response reduction capability of the liquid 

damper due to uncertainty. It may be realized that such a 

design method does not necessarily correspond to an optimum 

design in terms of maximum response reduction and its 

minimum dispersion. In order to obtain a more realistic 

optimum design of LCVA parameters to mitigate the vibration 

effect, a RDO is more desirable which can optimizes a 

performance index expressed in terms of mean value (the 

performance index obtained by the so called RBDO) as well 

as the variability of the performance function due to the 

presence of system parameter uncertainty. Thereby, a LCVA 

configuration is achieved so that the final response reduction 

capability of the system will be less sensitive to the variation 

of system parameters due to uncertainties. Moreover, in many 

real life problems, the most and the least conservative 

estimates (mini-max criteria) may only provide a range of 

variations. These estimates, though unsuitable for RBDO, can 

be integrated into a RDO process.   

The primary objective of the present study is to 

propose an RDO procedure to obtain the optimum LCVA 

parameters to mitigate seismic vibration effect of structures 

characterized by UBB type uncertain parameters. The 

maximum root mean square displacement (rmsd) of the 

primary structures is considered as the performance index. 

The RDO is obtained by using a two-criterion equivalent 

deterministic optimization problem, where the weighted sum 

of the nominal value of the performance function and its 

dispersion, is optimized. The conventional interval analysis 

based bounded design optimization (BDO) is also performed 

to demonstrate the effectiveness of the proposed RDO 

approach.  A numerical study is performed to elucidate the 

effect of parameter uncertainty on RDO of LCVA parameters 

by comparing the present RDO results with those obtained 

from the conventional BDO procedures.  

 

II. STOCHASTIC DYNAMIC RESPONSE OF LCVA- 

STRUCTURE SYSTEM 

 

A. Description of the system 

A LCVA is a U-shaped liquid column tube attached to the 

primary structure. The basic structure of a LCVA is generally 

modeled as a SDOF system with properties in accordance with 

the specified mode of vibration required to be controlled. The 

horizontal and vertical cross sectional area, length of the 

horizontal portion and density of liquid mass of LCVA are 

denoted by ,  ,   and h v hA A B  , respectively. A simplified 

model of LCVA structure system is shown in figure 1. The 

system is subjected to random base acceleration  bz t due to 

seismic motion. Ignoring the mass of the container of LCVA 

(which can be included in the mass of the primary structure), 

the total mass of the damper system can be expressed 

as:  2l h h vm A B hA   . The ratio of the total damper mass 

to that of the structure i.e. mass ratio is denoted by, 

  02 /h h vA B hA m    . Further, notations introduced are: 

area ratio,
V h =A /Ar , length ratio, /h ep B L where, the total 

length of liquid column,  2e hL h B  , the liquid frequency, 

ee= 2g/Ll where, ( )ee h e hL B r L B    [1 ( -1)]eL p r  and 

tuning ratio, 0/l   .   

The structure-damper system is subjected to base acceleration, 

 bz t due to earthquake motion. If  x t  and  y t  represents 

the horizontal displacement of the SDOF system relative to 

the ground and the displacement of liquid surface, the 

equation of motion of the liquid column can be approximated 

as: 

               
1

2
2

h ee h h h h bA L y t A y t y t gA y t A B x t z t                  (1) 

The constant ξ is the coefficient of head loss controlled by the 

opening ratio of the orifice typically placed at centre of the 

horizontal portion of the damper. It can be considered as the 

overall head loss induced by flow motion in the liquid column, 
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although it is mainly induced by flow passing through the 

orifice. 

 
Fig.1: The LCVA-SDOF system 

 

 

 The above equation is non-linear due to the drag-type 

forces induced by the orifice as indicated by the second term 

of the left hand side of Eq. 1. Using equivalent linearization 

techniques above equation can be approximated as [21]:  

                    2 2h ee h p h h h bA L y t A c y t A gy t A B x t z t             (2) 

Here, pc represents the equivalent linearization damping co-

efficient and can be expressed as [1], 

                                          

2

2

y

p

r
c

 


         (3) 

Where, y  is the standard deviation of the liquid velocity. 

From Eq. 3, it can be noted that 
pc  depends on the response of 

the liquid, y  which is not known a priori. Thus, an iterative 

solution procedure is required. Normalizing Eq. 2 with respect 

to mass of the liquid in the container (
h eeA L ) gives: 

                    
2 2p e e

b

ee ee ee ee

c L Lg
y t y t y t p x t p z t

L L L L
              (4) 

 

2.2 Structure motion equation 

 

The vibration of SDOF system (as shown in Fig. 1) having 

mass of 0m , stiffness 0k  and structural damping 0c  (damping 

ratio of 0 ) is to be reduced using LCVA. The equation of 

motion of the primary structure with LCVA can be written as, 

 

             0 0 0 0l l b h hm m x t c x t k x t m m z t B rA y t                     (5) 

Normalization of Eq. 5 with respect to mass, 0m leads to  

             2

0 0 01 2    1e

b

em

pL
x t x t x y t z t

L
                      (6) 

Where,  / 2em hL B r h  . Now,  rewriting  Eqs. 4 and 6 in 

matrix form yields: 

                     ( ) ( ) ( ) bt t t z   MY CY KY Mr                           (7) 

In which M, C, K represents the mass, damping and stiffness 

matrix of combined system defined as,                                           

  2

00 0

2 / 01 / 2 / 0
, and

/ 1 00 2

eee ee ee

e em

p LpL L g L

pL L

c

   

    
           

M K C                 (8) 

And [ , ]Ty xY is relative displacement vector 

and [0 1]Tr . Introducing the state space vector, 

, , ,( )T

s x xy yY , Eq. 7 can be written in state space form as 

[23]:  

                        s s bz t 
s

Y Α Y r                  (9) 

Where, 
k c

0
s

 
  
 

Α
Η Η

is the structural system 

matrix, 0,0,1,1]Tr , I and 0 is the 2x2 unit and null 

matrices, respectively and 
k

-1
H = M K  and 

c

-1
H = M C  

 

B. Response Covariance Analysis  

 

The load represents the random seismic acceleration 

)(tzb
 that excites the system at base of the primary structure. 

A widely adopted model in stationary case for )(tzb
  is 

obtained by filtering a white noise process, acting at the bed 

rock, through a linear filter which represents the surface 

ground. This is the well known Kanai-Tajimi stochastic 

process [22] which is able to characterize the input frequency 

content for a wide range of practical situations. The process of 

excitation at the base can be described as: 

 

            

2

2

( ) 2 ( )

( ) ( ) ( ) 2

f f f f f f

f f f f f f

x t x x W t

z t x t W t x x

  

  

   

   
                    (10) 

 

Where,  W t  is a stationary Gaussian zero mean white 

noise process, representing the excitation at the bed rock, 

f
  is the base filter frequency and  

f
 is the filter or 

ground damping.  

 

The global state space vector is defined as: 

 

                       [ , , , , , ]T

f fy x x y x xZ    (11) 

Using above notations, Eqs. 9 and 10 leads to an algebraic 

matrix equation of order six i.e. the so called Lyapunov 

equation [23]:  

                                 0T  ΑR RΑ Β                        (12) 

Where, the state space matrix A and B
 
are as following: 

0k

0c

0m

hB

x(t)

bz (t)

( )y t

Le
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 

2

11 12 0 12 12 0 0

2 2

21 22 0 21 22 0 0 0 0

2

11 21 12 22

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

22
0 2 0

22
2 2

0 0 0 0 2

1 1
, ,  ,   , , 1

p

ee ee

p

f

ee ee

f f f

e e

em ee

e

e e e e

cg
m m m m

L L

cg
m m m m

L L

L L
p p

L L
where m m m m d

d d d d

  

     

  






 
 
 
 
 
 
   
 
 

    
 
    


     

Α

2 e e

ee em

L L
p

L L


   (13) 

and 

0

0 0

0 2 S

 
 
 
 

  
 
 
 
  

Β
              (14) 

 The state space covariance matrix R is obtained as the 

solution of the Lyapunov equation. The state space covariance 

matrix of size 4x4 is represented as: 

 

                                
zz zz

zz zz

 
 
 
 

R R
R

R R
                           (15)                           

                                

So that
zz zz zz zz, , andR R R R  are the sub-matrices of R . The root 

mean square of displacement (rmsd) of liquid and the primary 

structure can be obtained as: 

                                           

(1,1) and (2,2)R Rzz zzy x
          (16)  

         

III. OPTIMIZATION OF LCVA PARAMETERS 

 

The optimum LCVA parameters are obtained by minimizing 

the vibration effect of a structure under dynamic load. The 

problem of optimization of the LCVA system of protection 

requires to determine the tuning ratio (  ) and coefficient of 

head loss ( ) of the damper system. The design vector (DV) 

can be thus defined as:   
T

b   . The SSO problem under 

random earthquake load can be formulated as the search of a 

suitable set of DVs, over a possible admissible domain Ω  to 

minimize desired objective. For stochastically excited 

structures, a tractable measure of performance can be given in 

terms of mean square responses (displacement, acceleration, 

stress etc.). The failure probability of the structure or the total 

life-cycle cost of the structure can be also used as the 

performance index.  In the present study, the rmsd of the 

primary structure is considered as the objective function. The 

SSO problem so defined leads to a standard nonlinear 

programming problem [24]: 

             Find tominimze, xb f  Ω                       (17) 

       

IV. PARAMETER UNCERTAINTY AND OPTIMUM 

LCVA SYSTEM 

It can be noted that the matrix A and B as described by Eqs. 13 

and 14 are functions of various system parameters 

characterizing the primary structures and the stochastic load. 

This includes the properties of primary structure and ground 

motion model parameters. The response statistic evaluated 

under stochastic earthquake load to solve the SSO problem as 

described by Eq. 17 intuitively assumes that these parameters 

are completely known. However, the uncertainties in these 

system parameters may lead to unexpected excursion of 

responses affecting the desired safety of structure [25-26]. 

Thus, in the design of optimum LCVA parameters, apart from 

the stochastic nature of earthquake, the uncertainty with regard 

to these parameters, expected to have influences on the 

optimization results should be taken into account. This will 

involve sensitivity analysis of stochastic dynamic system. In 

the present section related formulations are briefly presented. 

A. Uncertain Parameter Model and Response Sensitivity 

In many cases, even though some experimental data are 

available about the system parameters, it is not enough to 

construct the probability density function reliably. The 

available data can be used, particularly in combination with 

engineering experience, to set some tolerances or bounds on 

uncertainties. If ix  is the nominal value of the i
th 

UBB 

parameter viewed as the mean value and 
ix  represents the 

maximum deviation from the nominal value, then the UBB 

parameter value deviates from the nominal value can be 

expressed as, 

        
[ , ] [ , ] [ 1,1]

where, , [ 1, 1]
2

I l u
i i i i i i i i i i i

l u
i i

i

x x x x x x x x x x x e

x x
x e





           


  

        (18) 

Thus, the i
th 

interval variable can be written as: 

,where, , 1,2,..,i i i i ix x x x x i m      .    

The system matrix A and  B as well as the response covariance 

matrix R can be expanded with respect to `m` numbers of such 

UBB parameters in Taylor series about the nominal values in 

first order terms of ix  as, 

            1 1

1

.., ..

.., [ , ], 1,2,..,

m m

i i

i ii i
m

i i i i

i i

x x
x x

x x x x i m
x

 

 

 



 
   

 


     


 



A B
A = A B = B

R
R = R

     (19) 

In the above, the over bar represents the matrices 

correspond to the nominal values of the UBB parameters. The 

derivatives are evaluated at the nominal value of the model 

parameters i.e. at i ix x . To avoid the complicacy in 

presentation, the notations of various derivatives are not 

explicitly mention. However, all the first order derivatives 

used in the text means that those are evaluated at the mean 

point of the associated uncertain variable.  

Substituting Eq. 19 in Eq. 12 for i
th

 UBB parameters and 

equating the equal order term after neglecting the higher order 

term the following can be readily obtained as:  
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                   T  AR + RA B 0                                     (20)   

                

where,

T I

x xi i
T

I

x x

 
  

 

 
 
 

R R
A A B 0

A A
B R R

                        (21) 

The mean covariance matrix R  is readily obtained by solving 

Eq. 20 considering the mean value of system parameter matrix 

andA B  obtained by substituting the mean value of the model 

parameters. The first order sensitivities of the covariance 

matrix 
xi





R
can be obtained by solving Eq. 21. It may be noted 

that the equation needs to be solved for each uncertain 

parameter involved in the problem.   

B. Bounded Optimization of LCVA Parameters   

The performance function i.e. the rmsd as defined by Eq. 17 is 

also a function of the uncertain parameters and can be 

expanded in first order Taylor series as the mean and 

fluctuating part as following:   

                     ...

1

m
xx x i

xii


  


 




=                       (22) 

In above, x is obtained by using the solution of Eq. 17 in Eq. 

16. The sensitivity of rmsd can be obtained by differentiating 

the appropriate expression of Eq. 14 with respect to the i
th 

UBB parameters as following:  

        
1 (2,2)

/ (2,2)
2

x

x xi

  
    

R
R                            (23) 

In which, / xi R  is obtained by solving Eq. 21.  Now, by 

making use of interval extension in interval mathematics 

assuming monotonic responses, the interval extension of the 

above expression can be obtained as,   

         

1

m
I x
x x i

ii

x e ..
x






     


(X) (X)              (24) 

The interval region of the function involving the UBB 

variables can be then separated out to the upper and lower 

bound as below: 

           

.. and

1

..

1

m
u x xx x i

xii
m

x xxl x i
xii


 


 


  





  








=

=

     (25) 

 The optimization problem now involves two separate 

objective function yielding the upper and lower bound 

solutions. It can be noted that the rational approximation of the 

function is a linear function of the bounded uncertainties and 

each such variable appear once in the expression and the 

interval solution obtained is unique.  

 

C. Robust Optimization of LCVA Parameters 

The RDO can be considered as a design procedure that is 

insensitive (or less sensitive) to the changes in the input 

variables within the prescribed ranges of interest. It also 

ensure specified safety if sufficient information about the 

uncertain inputs are available or satisfy certain indirect 

measures of safety in the absence of sufficient statistical 

information. 

The robustness of performance is generally expressed 

in terms of the dispersion of performance function, f  from 

its nominal value, f .  The performance of the design is 

characterized by a function f(x), x composed of the design 

parameters. Using first-order Taylor series expansion about x ; 

f  and  f  can be approximated as [27]:  

)f f (u  

1

N f
f ui

uii


  



                    (26) 

The dispersion f  can be visualized as a gradient index, 

which is a function of the gradients of the performance 

function with respect to uncertain variables.  The objective of 

an ideal design is to achieve the optimal performance as well 

as less sensitivity of the performance with respect to the 

variation of system parameters. Thus, one needs to minimize 

the performance as well as its dispersion. The two criteria 

often conflict with each other. The problem is dealt as a multi-

objective optimization, where the conventional objective 

function and its dispersion are two objectives that need to be 

optimized. Thus, the RDO problem is stated as the 

minimization of the mean and variance of the objective 

function as well as its variance, leading to a two criteria RDO 

problem, expressed as: find  , to min.  { }f, fx . The two-

criterion optimization problem is transformed to minimization 

of an equivalent single objective as:  

  mean *  + 1-f *     

Where, α is a weighting factor in the bi-objective optimization 

problem. The maximum robustness will be achieved for α 

=1.0, and α = 0 indicates optimization without any 

consideration for robustness. In  Eq.  27, *f  and *f are the 

optimal solutions at two ideal situations obtained for, 1.0   

and 0.0, respectively.   

 

V. NUMERICAL STUDY 

A SDOF primary system with an attached LCVA as shown in 

Fig.1 is undertaken to elucidate the proposed RDO of LCVA 

system in seismic vibration control of structure characterized 

by UBB type system parameters. The uncertainties are 

considered in. 0 0 0, , , andf f S    . Uncertainty of such i
th 

parameter, xi is described by ix , representing the maximum 

possible dispersion expressed in terms of the percentage of 

corresponding nominal value ( )ix . The PSD of white noise 

process, S0 is related to the standard deviation z  of ground 

acceleration by [28]: 

 

2

0
2

2

1 4

b
f z

f f

S
 

  



. Unless mentioned 
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otherwise, the following nominal values are assumed in 

present numerical study: 2secT  ,
0 1%  , µ=3%, p=0.7, 

r=1.5, PGA=0.2g, 
ix  =10% and it is assumed that 

3 zPGA  . Based on this, the rmsd of the unprotected 

system i.e. without LCVA is computed to be 11.08 cm.  

           The rmsd of the primary structures is optimized by the 

RDO procedure as proposed by Eq. 27. The optimum mean 

value of the performance function i.e. the rmsd of the structure 

versus mass ratio is plotted in Fig. 2 for different settings of 

weight factor . The rmsd results are normalized with respect 

to the rmsd of unprotected structure for convenience to study 

the nature of variation of performance of LCVA for varying 

degree of robustness imposed on the design. The associated 

dispersion of the rmsd of the primary structures is shown in 

Fig. 3. The corresponding optimum tuning ratio and head loss 

coefficient are shown in Figs. 4 and 5, respectively. The BDO 

results are shown in the same plot for ease in comparison with 

the present RDO results. The lower bound solution though 

efficient in terms of response reduction; the associated 

dispersion of the design is more.  The efficiency of the RDO 

solution is less compare to that of the lower bound solution 

and lies in between these two bounded solution. However, the 

dispersion of the design is much lower than the dispersion of 

the lower bound case solution. The RDO solution show the 

tendency to give greater damping values in comparison to 

those required in the conventional BDO approach. Moreover, 

one can notice that the damping ratio varies in more ample 

ranges. The tendency is more marked when α decreases. 
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Fig.2: The variation of the mean value of the rmsd of the 

primary structure with varying mass ratio. 
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Fig.3: The variation of the dispersion of rmsd of the primary 

structure with varying mass ratio. 
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Fig.4: The optimum tuning ratio with increasing mass ratio 

 

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 Upper bound,  Lower bound

 RDO,=0.1,  RDO,=0.2

 RDO,=0.3,  RDO,=0.5

 RDO,=0.7,  RDO,=0.9

O
p
ti

m
u
m

 h
ea

d
 l

o
ss

 c
o
-e

ff
ic

ie
n
t,

 
op

t

Mass ratio,  (%))

 
Fig.5: The optimum head loss coefficient with increasing mass 

ratio 

 

The normalized mean value of the rmsd of the 

primary structure versus uncertainty range is plotted in Fig. 6 

for different value of weight factor . The associated 

normalized dispersion of the rmsd of the primary structures is 

shown in Fig. 7.  
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Fig. 6: The variation of mean value of the rmsd of the primary 

structure with varying uncertainty range. 
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Fig. 7: The variation of dispersion of the rmsd of the primary 

structure with varying uncertainty range. 
 

The corresponding optimum tuning ratio and head loss 

coefficient are shown in Figs. 8 and 9, respectively. The width 

of the bounded solution increases sharply with increasing level 

of uncertainty. However the change of the optimum rmsd is 

nominal by the proposed RDO case. As expected, the 

dispersion of the rmsd value increases with increasing level of 

uncertainty for all robust design cases i.e. for all settings of α.  

However, the dispersion of design is much smaller than the 

dispersion of lower bound case irrespective of level of 

uncertainty. The change in the head loss coefficient as shown 

in Fig. 9 with increasing level of uncertainty is e notable. To 

study the sensitivity of various parameters involved in the 

RDO procedure, further results are developed.   
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Fig. 8: The optimum tuning ratio with increasing level of 

uncertainty 
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Fig. 9: The optimum head loss coefficient with increasing 

level of uncertainty. 

 

The normalized rmsd of the primary structure and its 

dispersion with varying length ratio are shown in Figs. 10 and 

11 and in Figs. 12 and 13 for varying time period. Further 

similar results are shown in Figs. 14 and 15 for varying area 

ratio. It may be observed from these plots that without 

affecting the efficiency of the LCVA system of protection 

much, the dispersion of the performance can be reasonably 

reduced. Thereby, improved robustness in achieved in the 

design by the RDO approach. The results show that the trends 

of RDO results remain same over wide range of length ratio 

and area ratio. 
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Fig. 10: The variation of the mean value of the rmsd of 

primary structure with varying length ratio 
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Fig. 11: The variation of the dispersion of the maximum rmsd 

of the primary structure with varying length ratio 
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Fig. 12: The variation of the mean value of rmsd of the 

primary structure with varying time period 
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Fig. 13: The variation of the dispersion of the maximum rmsd 

of the primary structure with varying time period 

 

The normalized rmsd of the primary structures and its 

dispersion with area ratios are plotted in figures 14 and 15, 

respectively for different values of the weight factor . The 

results of BDO procedure are also shown in the same plot.  
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Fig. 14: The variation of the mean value of rmsd of the 

primary structure with increasing area ratio 

1.0 1.2 1.4 1.6 1.8 2.0

0.030

0.035

0.040

0.045

0.050

0.055

0.060

 Upper bound,  Lower bound

 RDO,=0.1,  RDO,=0.2

 RDO,=0.3,  RDO,=0.5

 RDO,=0.7,  RDO,=0.9

D
is

p
er

si
o
n
 o

f 
rm

sd
 (

n
o
rm

a
li

se
d
)

Area ratio, r

 
Fig. 15: The variation of the dispersion of the maximum rmsd 

of the primary structure with increasing area ratio 

 

To study the trade-off between the objective values 

of a design and its robustness, the Pareto front is generated by 

solving the RDO by varying the weight factor  and the 

results are plotted in Fig. 16 for different mass ratio. The 

uncertainty range for all variables and parameters are taken as 

10% of the nominal values. It can be observed from the plot 

that more robustness is achieved at the cost of sacrificing the 

optimum weight. The corresponding optimum parameters are 

shown in Figs. 17 and 18, respectively. 
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Fig. 16: The Pareto front of the RDO of the LCVA system  
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Fig. 17: The variation of optimum tuning ratio with varying 

weight factor   
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Fig. 18: The variation of optimum head loss coefficient with 

varying weight factor   

 

6. CONCLUSIONS 

The RDO of LCVA system to mitigate the seismic vibration 

effect of structures characterized by UBB type system 

parameters is studied in the present work. The usual BDO 

solutions are too far apart and conservative upper bound 

solution usually suggested is of little use for practical design 

application. Moreover, such approach fails to provide 

information about the possible dispersion of the design 
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performance. But, the RDO approach provides the necessary 

flexibility to the designer to achieve the desired level of 

performance efficiency (i. e. reduction of vibration level) and 

its dispersion under uncertain environment through suitable 

choice of weight factor. It is generally observed that more 

robustness is achieved at the cost of sacrificing the optimum 

weight, an obvious characteristic of results obtained from any 

multi-objective optimization problem. Though, the efficiency 

of RDO solution is comparatively less compare to that of the 

lower bound solution, the dispersion of the design is much 

lower than the dispersion of the lower bound case solution. It 

may be noted that the approach being generic in nature, can be 

applied for robust optimum design of LCVA for vibration 

control of more complex MDOF system, which needs further 

study.  
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