

44

Measuring Test Case Reusability Based on

Simplicity and Independence
Mohammad Rava, Asst. Prof. Dr. Jirapun Daengdej

Abstract— Test Case reuse is known as a prominent solution

for reducing the cost of testing while increasing the test reliability

and productivity. There are many methodologies presented that

concentrate on generating reusable test cases, however there are

very few that concentrate on measuring how reusable a test case

is based on internal and external characteristics. This research

investigated several metrics for measuring test case reusability

and selected two that were most prominent. The two metrics are

then combined and result a measurement model for measuring

test case reusability. The prominent characteristic of this model is

that it can serve as a template for test case reusability as it will

allow for further metric factors to join and expand upon it.

Keywords— Test Case, Reusability, Metric, Independence,

Simplicity.

I. Introduction
Software testing has been estimated to take as much as

70% of the overall cost of producing the application or
software [1]. This implies the importance of software testing
in software development process.

A common practice to reduce the cost of test development
is through reusability [2], particularly test case reusability.
This practice helps testers to avoid duplicating their efforts in
order to create the same test case, doing so would also
improve the quality of software testing and greatly reduce the
cost of production which would lead to further enhancing the
productivity of software companies [3]. This has led software
developers and organizations to consider test case reusability
as method to reduce the costs.

In order to better choose test cases to reuse, it is essential
to understand how to measure test case reusable quality [4].
Several methods of reusability are investigated in this paper,
and two prominent factors are presented. The factors are
independence and simplicity, and are combined together to
measure test case reusability. This measurement model serves
as a basic template that will allow new factors to be added and
included in later iterations of the model.

This research has three main objectives. The first objective
is to discover several potential criteria for measuring

reusability in software systems, and identify potential
reusability factors for test cases in software testing. The
second objective is to create a basic expandable template for
measuring test case reusability based on independence and
simplicity for test cases generated from control flow diagrams
and use cases. And the final objective is to evaluate the
template by using different samples for generating test cases
based on control flow diagrams and use cases.

The remainder of this paper is organized as the following:
Section two starts with briefly explaining and elaborating the
basic background required to understand the model, and later
expands on some of the previous work that have been done in
measuring reusability in general, test case reusability, and
different measurement methods suggested for creating a
metrics for reusability in test cases. Section three expands on
the current problems faced by the different measurement
models, and why some of the factors they provide are not
entirely usable in other scenarios. Section four elaborates the
proposed solution and the new presented factors. Section five
evaluates and analyzes the solution by implementing it on test
case scenario. Section 6 concludes the paper by briefly going
over the advantages and the drawbacks of the model, and also
how can future studies expand upon the current solution.

II. Background and Literature
Review

A. Test Case
The Institute of Electrical and Electronics Engineers

defines a test case as "A set of test inputs, execution
conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to
verify compliance with a specific requirement. [5]”. A test
case is essentially a mechanism in which a tester will use to
evaluate if a software or application is functioning properly.
The mechanism is usually a set of conditions or variables
under which the tester will use to make those evaluations.

Test cases are considered to be an essential part of testing
process, thus reusability is often directed towards test cases
with the intent on reducing the cost of testing. The main
purpose of reuse in testing is to reduce implementation time
and decrease the chance of bugs and errors appearing, since
prior testing on those modules has refined them. Test cases
often contain many different components and attributes,
however according to IEEE Standard 829 [21] there are
several basic attributes that can be used in order to generate a
test case. For the purpose of this research the components have
been modified based on the standard [21] and requirements
seen on test case reusability metrics model [4]. Thus we have a
total of eight criteria which are:

Mohammad Rava

Assumption University

Thailand

Asst. Prof. Dr. Jirapun Daengdej

Assumption University
Thailand

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

45

Test Case ID, a test case specification identifier [21], it is
used to create a unique identifier for each test. Test Item is the
item that is being tested from the system/application. Test
Case Objective is the purpose of the test case, sometimes
referred to as Test Case Description, used to describe the test
case in a few simple words. Test Case Keywords are used for
the purpose of searching test cases; this particular attribute is
based on Test Case Reusability Metrics Model [4] which is
used as a metrics component. Test Inter-Case Dependency – a
components based on the standard [21] – is required in the
measurement of test case reusability according to TCRMM
[4]. This component mainly keeps track of the number of
precursor test cases. Test Steps also known as steps to execute,
are procedures that need to be executed in order to
successfully perform a test case. Test Data which is based on
the standard [21], which mainly tracks the values involved in
the verification of the test case. And finally Expected Result
which is used to verify the result of the test case, mainly used
as comparison with actual result. A test case only passes when
the actual results and expected result are matching.

There are several methods to generate test cases. The main
method used in this research is based on Control Flows and
Use Cases. In order to generate a test case, the user needs
access to the use case or the control flow of a system which
will grant him different sequences and pathways to be tested in
a specific sub-system or function [22]. This method grants a
total coverage of all the functions in the test case.

B. Reusability Factors
Many studies and researches from the computer science

and software industry have analyzed the benefits of software
reuse and reusability and believe that it plays a key strategic
factor in improving software quality, productivity and
reliability as well as reduce development cost [6] – [13].

Depending on the aspect of reuse, researchers have
provided different insight into the factors that affect
reusability. The study [12] follows the common belief that
large components are harder to reuse. According to widely
used cost estimation model knows as The Constructive Cost
Model II (COCOMO II) [14], it is considered that software
reuse and reusing components cost is higher if the reusable
component is larger. Using regression analysis the relationship
between the complexity of a component and the ease of reuse
was analyzed. An inverse correlation was found between the
complexity and ease of reuse, which means the higher the
complexity, the lower the ease of reuse. This means
complexity is an essential factor for measuring reusability on
any level of software development.

The study “Test Case Reusability Metrics Model”
(TCRMM) [4] presents four factors for measuring test case
reusability based on the collective experience of the authors in
the field of software testing and reference to software
engineering product quality ISOI/EC 9126 [15] came up with
four factors they used for measuring test case reusability. The
factors are Understandability, Changeability, Independence
and Universal. It is assumed that more understandable a test
case is the more reusable will it be, thus understandability is

measured based on the number of characters in a test case
summery, and the number of test keywords and test items. In
the second factors it is theorized that the more changeable a
test case is the more reusable it will be. Changeability is
measured based on the number of variables and constants in a
test case. The third factor is that the more independent a test
case is from other test cases, then the more reusable that test
case will be. The independence factor is measured based on
the number of precursor test cases that relate to the measuring
test case. Universal factor is that the more universal a test case
is, the more reusable it will be, and it is measured based on the
number of involved functions and the number of hardware and
software scenarios.

C. Problem Statement
The factors elaborated in Test Case Reusability Metrics

Model are rather situational and work based on presumed
criteria. To measure understandability the researchers assume
a degree of meaningfulness and relevance of the sentences and
information provided. However in many cases when the
number of characters is among the main metric factors, then
there could be cases in which the sentence could be
completely unrelated to the test case and still yield a full score
for understandability. Although understandability is
considered to be a strong factor for reusability [12] there are
alternative models available that rely on more scientific
approach [16] on measuring understandability rather than a
purely linguistics approach.

The changeability factor is also based on presumed values
that are not freely defined in many test case generation
methods. The changeability formula provided by the authors
of “Test Case Reusability Metrics Model” [4] does not follow
the theoretical principle behind it. The formula is seen in
Equation (1), where CC stands for changeability of constant c
in test case t:

 () {

 , - ()

The theory is that the fewer constants a test case has, the
more changeable the test case will be. However as seen in
Equation (1), if there are no constants, then the changeability
value is set to zero and not one. This means that the
changeability value for no constants is mathematically equal to
the changeability of an infinite number of constants.

Measuring universal does not hold any weight system for
the number of applications and the number of
hardware/software scenarios. Equation (2) demonstrates how
universal is measured for case of application universality.
Consider UNF as the percentage of universal properties to
applications of the test case "t". The number of application in
which test case "t" can be used is shown with "f":

 () {

 , - ()

As seen, there is no indication for the weight of the
applications, whether they are complex or simple. In cost

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

46

calculation methods such as COCOMO II, there is a weight
system of the application programming language [14]. The
level of programming language used to write the code directly
affects the complexity of the application and in turn increase
the effort required to create them. However such consideration
is not seen in universal factor, and thus would make for an
unreliable metric in measuring how universal and general a
test case is.

III. Proposed Solution

A. Independence
Independence is based on the same factor elaborated in

Test Case Reusability Metrics Model [4] by which is
measured based on the number of precursor test cases. To
calculate independence, the variable “I” is considered a
percentage of independence property of test case "t", and the
number of precursor test cases which test case "t" has is
represented with "p". The formula is seen in Equation (3). The
value of I(t) is always between 0 and 1, with the possibility of
being 1 when p is equal to 0, meaning that there are no
precursor test cases.

 () , - ()

B. Simplicity
Simplicity is based on theories that measure complexity of

the test case and components. Among the most prominent and
reliable methods of measuring complexity in software systems
is cyclomatic complexity, which is a software measurement
technique developed in 1976 by Thomas J. McCabe [17]. This
method is based on software control flows and it mainly
measures the complexity of the system by how big and how
diverse it is. The more conditions and states exist in a system,
the more complex the system will be. Cyclomatic Complexity
grants a basic idea of the need to measure complexity from a
white box perspective.

However according to researches performed in the field of
measuring complexity [17], [18], [19] and [20], it has been
suggested that a hybrid solution of both black box and white
box methods is required in order to accurately measure the
complexity of a component, and thus in order to measure the
complexity of the test case two aspects are used that comprise
of a grey box method. However for the purpose of measuring
reusability, simplicity is measured. The reason simplicity is
used as a measurement factor instead of complexity, is mainly
because in sense of measuring reusability percentage the
closer the value is to 1 (one) the more reusable it is
considered, and thus simplicity is introduced as a form of
measuring complexity in test cases.

To measure simplicity two factors are considered.
Simplicity based on test items which measured simplicity
based on the number of test items [21]. The more items a test
case tests, the more complex it would be, and thus the less
reusable. This results in Equation (4), in which NTI is the
number test items in a test case, and STI is the value of
simplicity based on test items. This form of simplicity is based
on the black box aspect of the test.

𝑆𝑇𝐼()

 𝑇𝐼
 ()

To fully measure simplicity a combination of both white
box and black box is needed. In order to measure white box
simplicity the concept of Cyclomatic Complexity [17] is used
in which complexity is measured based on the number of
nodes and edges in a control graph. Since test items are
considered a black box element then a white box element is
needed in order to create the hybrid simplicity measurement
equation. Thus the number of edges is used to measure the
white box simplicity. The simplicity based on edges is shown
in Equation (5), in which NE is the total number of edges in a
control flow traverse scenario for test case t. SE stands for the
value of simplicity based on control flow edges.

𝑆 ()

 ()

In order to reach the total value for overall simplicity of
the test case an average of both values are used as they each
represent a different aspect of simplicity. The value of S (t) in
Equation (6) is the final simplicity value for test case t, which
is a combination of both simplicity values.

𝑆()
𝑆 () 𝑆𝑇𝐼()

 ()

C. Test Case Reusability Final Template
In order to measure the reusability metrics for the test case

“t” the two factors (Independence and Simplicity) are
combined and averaged. In Equation (7) R(t) stands for the
reusability value of test case t.

 ()
 () 𝑆()

 ()

There is currently no weight system between the factors,
both independence and simplicity have equal weight and effect
in measuring reusability of a test case.

IV. Implementation and
Evaluation

The proposed model was applied to three different systems
with their test case groups to demonstrate the applicability of
the solution in different scenarios. Among the selected cases
the “ATM Withdraw” activity diagram and initial test case
selections are used to illustrate how the model applies. The
activity diagram is taken from Ian Summerville book on
Software Engineering [24] with minor modification by another
research [25] that also extracted the initial set of test cases for
the “ATM Withdraw” case. Figure 1 shows the activity
diagram for the ATM Withdraw.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

47

Figure 1. The ATM Withdraw Activity Diagram [24 – 25]

The system has two main interfaces; one is the ATM
interface by which the user interacts with, and the other the
Bank interface which the ATM interacts with.

The system starts by accepting the ATM card from the
user, once accepted the user proceeds to insert his pin number
which is promptly checked by bank, if invalid the user may
have to enter the pin again or cancel which then the system
will respond by ejecting the card. If the pin is accepted the
user then proceeds to enter the required amount, the amount is
then checked with the bank and the account holder’s balance,
if insufficient the bank then checks if the user has permission
to over withdraw from balance, if there is no permission the
message “Insufficient balance and no permission granted” will
appear on the screen and the card is ejected. If there is
permission the balance is then updated and a receipt created.
The receipt is then printed and the cash is dispensed at the
same time and the system proceeds to eject card and end.

In order to extract test cases from activity diagrams, they
must be converted to Activity Diagram Graphs (ADG) which
in this case essentially serves as control flows for the system.
The converted diagram is created by the researchers of Test
Case Generation Based on Activity Diagram [25] and is
shown in Figure 2.

A

B

C

D

E

F

G

HI

J

K, L LO

MP

Q

[Valid]

[Invalid]

[Cancel]

[Sufficient][Insufficient]

[Permission]

[Require Receipt]

[No Permission]

Figure 2. The ATM Withdraw Activity Diagram Graph [25]

Using the Activity Diagram Graph in Figure 2 the
researches generated test paths for testing the diagram.
However the test paths used for the measurement model do not
have any test case performance techniques applied and are of
average quality (including the redundancies present in the
system) and expect to generate an average result of reusability
[25]. The test paths are shown in Table 1.

TABLE 1. The ATM Withdraw Test Paths

Each test path represents a single test case, which is
represented using the IEEE Standard 829 [21] mentioned
earlier in the introduction. Applying the model to each test
case separately has resulted in Table 2 which includes all the
values that result from the generated test cases.

Test Path Test Path Sequence

 * +

 *
 +

 *
 +

 * +

 *
 +

 *
 +

 * +

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

48

TABLE 2. The ATM System Reusability Measurement Results

The researchers of “A Study of Reusability, Complexity
and Reuse Design Principles” [12] used a 5 point likert scale
very similar to a another presented research [26] to interpret
the value of reusability: (1 – Not Used, 2 – Difficult to Reuse,
3 – Neither Difficult not easy to reuse, 4 – Easy to Reuse, 5 –
Very Reusable.) they measured reusability of a component as
perceived by subjects reusing the components. Modifying the
likert scale for the reusability equation yielded the results seen
in Table 3 which includes how each test case should be
interpreted. Note that the value of overall reusability can never
reach 0 since the independence value can never be 0.

Percentage Range Likert Scale Point

(0% ─ 20%] Not Used

(20% ─ 40%] Difficult to Reuse

(40% ─ 60%] Neither Difficult nor easy to reuse

(60% ─ 80%] Easy to Reuse

(80% ─ 100%] Very Reusable

Test case ATM_01 is considered very reusable mainly due
to the value of 81.3% reusability falling in the range of 80% -
100% in the Likert scale. Test cases ATM_02 and ATM_03
have a reusability percentage of 58.2% and thus are considered
neither difficult nor easy to reuse. Test cases ATM_04,
ATM_05 and ATM_06 also fall into the same category since
their values 57.3%, 56.8% and 56.8% respectively are in the
scale of neither difficult nor easy to reuse. The last test case
(ATM_07) is considered easy to reuse since the value 66.1%
is over 60% and below 80%.

Considering all the values generated, it enhanced the main
idea that these test cases were not optimized and expected to
similar results in case of reusability. Depending on the type of
optimization the values may change the overall reusability.

V. Conclusion
In the early stages of the research many factors were

discovered that had an effect on measuring test case
reusability. A Study of Reusability, Complexity and Reuse
Design Principles [12] introduced overall Understandability
and Complexity as main factors of measuring reusability.
However the method used for measuring Understandability
was via surveys and human perception, meaning that the

degree of understandability was measured via how the testers
presumed it was and not based on solid measurement model.
The Complexity factor was mentioned in several other
researches [12], [17], [19], [20] as a prominent factor that
affects reusability. This factor was later explored and
expanded upon in the solutions section and following previous
research and calculation methods such as Cyclomatic
Complexity [17] and Hybrid Complexity measurement models
[19], [20] influenced the direction of which this research used
to measure Simplicity (which is defined as reverse
complexity). Other factors such as Changeability, Universal
and Independence were elaborated and measured in Test Case
Reusability Metrics Model [4], but some such as
Changeability and Universal were dismissed due to the fact
that they were limited to the scope of their research and test
case generation method, and they were not compatible with
the objectives and scope of this research.

When the potential factors of Reusability were identified,
two of the prominent factors were chosen and expanded upon
for use in measuring test case reusability. A template metrics
system was generated that could measure test case reusability
of test cases that are generated only in a certain way. The
template uses two factors of independence and simplicity as
the main criteria for measuring test case reusability. These two
factors are considered as a base for the template, and in later
editions new factors could be introduced to the system in order
to make it more reliable and precise.

In order to evaluate the results of the test case reusability
measurement model three main test case samples were used.
One of the three samples (ATM Withdraw) [24] was
demonstrated as an example in this article.

There are several drawbacks with the proposed solution.
The first drawback is a lack of weight system for the factors.
This means that there is no weight system in place for the
metrics model. In the current model for measuring reusability
all the metrics are considered equal in value and weight. This
can be rather problematic when a certain organization or
developer wants to have a higher emphasis on a certain
criterion or factor. Such would be a higher emphasis on
simplicity instead of independence. The second drawback is
lack of precision due to low number of influential factors.
Currently the formula consists of two main criteria and this
would make it inaccurate in most cases. This is particularly the
case where the simplicity is very low (closer to 10%) and
independence is 100%. This would average to 55% and thus
consider it an average reusable test case. Although it may very
well be, if there were additional variables, the number could
have been more precise. The third drawback is limitations
due to scope of work. Currently the metrics model required the
tester to have background knowledge from the test case
generation process. This is mainly because of the white box
natures that exist within the simplicity measurement factor. In
order to design the test cases the tester needs to know about
the Control Flows and Use Case Scenarios which indicate the
innate complexity of the test case. Other than the white box
requirement, there is also a need for Black Box attributes that
would aid in a more precise measurement of simplicity
according to the hybrid complexity theories mentioned in
several researches.

Test Case ID Independence Simplicity
Reusability

Percentage

ATM_01 100% 62.50% 81.3%

ATM_02 100% 16.35% 58.2%

ATM_03 100% 16.35% 58.2%

ATM_04 100% 14.54% 57.3%

ATM_05 100% 13.57% 56.8%

ATM_06 100% 13.57% 56.8%

ATM_07 100% 32.14% 66.1%

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

49

VI. Further Study
This research could serve as a template for expanded work

on a field that is currently rarely worked upon. There are very
few that concentrate on the aspect of singular test case
reusability and fewer tend to look for methods of quantifying
it. In further researches the drawbacks could be explored
more.

New criteria such as changeability and understandability
have a higher potential to be considered for the reusability
metrics. Both criteria are included in Test Case Reusability
Metrics Model, but they are measured based on factors that are
not accurate and produce results that are not reliable..

References

[1] S. Schach, Software Engineering, Aksen Associates,Boston, MA, 1990.

[2] Douglas D. Lonngren. Reducing the Cost of Test Through Reuse.
AUTOTESTCON98. IEEE Systems Readiness Technology Conference,
1998 IEEE.

[3] Jin-Cherng Lin, Kuo-Chiang Wu. A Model for Measuring Software
Understandability. 2006.

[4] Zhang Juan, Cai Lizhi, Tong Weiqing, Yuan Song, Li Ying, Test Case
Reusability Metrics Model, 2010 2nd International Conference on
Computer Technology and Development (ICCTD), November, 2010.

[5] Institute of Electrical & Electronics Engineers, Standard 610 (1990),
reprinted in IEEE Standards Collection: Software Engineering 1994
Edition.

[6] R. van Ommering, Software reuse in product populations, IEEE
Transactions on Software Engineering, vol. 31, pp. 537-550, 2005.

[7] P. Mohagheghi and R. Conradi, Quality, productivity and economic
benefits of software reuse: a review of industrial studies, Empirical
Software Engineering, vol. 12, pp. 471-516, 2007.

[8] P. Mohagheghi and R. Conradi, An empirical investigation of software
reuse benefits in a large telecom product, ACM Transactions on
Software Engineering Methodology, vol. 17, pp. 1-31, 2008.

[9] W. B. Frakes and G. Succi, An industrial study of reuse, quality, and
productivity, Journal of Systems and Software, vol. 57, pp. 99-106,
2001.

[10] M. Morisio, et al., Success and Failure Factors in Software Reuse, IEEE
Transactions on Software Engineering, vol. 28, pp. 340-357, 2002.

[11] W. C. Lim, Effects of Reuse on Quality, Productivity, and Economics,
IEEE Softw., vol. 11, pp. 23-30, 1994.

[12] R. Anguswamy, W. B. Frakes,. A Study of Reusability, Complexity,and
Reuse Design Principles. ESEM’12, September 19–20, 2012.

[13] Frakes W. Systematic., Software Reuse: A Paradigm Shift. In
Proceedings of Third International Conference on Software Reuse:
Advances in Software Reuse. Los Alamitos, California: IEEE Computer
Society Press, 1994

[14] B. Boehm, et al., Cost estimation with COCOMO II, ed: Upper Saddle
River, NJ: Prentice-Hall, 2000.

[15] ISOI/EC 9126 Software engineering Product quality, wwwjtclsc7.org.

[16] Jin-Cherng Lin, Kuo-Chiang Wu., A Model for Measuring Software
Understandability. 2006.

[17] Thomas J. McCabe. "A Complexity Measure". IEEE Transactions on
Software Engineering, Vol. Se-2, No. 4, December 1976.

[18] Anthony Barrett, Daniel Dvorak, A Combinatorial Test Suite Generator
for Gray-Box Testing, Third IEEE International Conference on Space
Mission Challenges for Information Technology. 2009.

[19] Lingzhong Meng, Minyan Lu, Baiqiao Huang, Xiaojie Xu, Using
relative complexity measurement which from complex network method

to allocate resources in complex software system’s gray-box testing,
International Symposium on Computer Science and Society, 2011.

[20] Harrison Warren,Cook Curtis. A micro/macro measure of software
complexity[J]. Journal System Software. 1987 : 213-219

[21] IEEE 829-1998 - Software Quality Engineering - Test Case
Specification Template - Version 7.0 - 2001

[22] Jim Heumann, Generating Test Cases from Use Cases, The Rational
Edge, 2001.

[23] S. Roongruangsuwan, J. Daengdej. Test Case reduction Methods by
Using CBR. Autonomous System Research Laboratory. 2010.

[24] Ian Sommerville, Software Engineering, 7th ed. Harlow: England, 2004.
Chapter 14.

[25] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed A. Hashim,
Mohamed F. Tolba. An Enhanced Test Case Generation Technique
Based on Activity Diagrams. 2011 International Conference on
Computer Engineering & Systems (ICCES). Nov. 29 2011.

[26] S. R. Nidumolu and G. W. Knotts, The effects of customizability and
reusability on perceived process and competitive performance of
software firms, MIS Q., vol. 22, pp. 105-137, 1998.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

