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Abstract—The Graph Partitioning Problem (GPP) has several 

practical applications in many areas, such as design of VLSI ( 

Very-large-scale integration) circuits, solution of numerical 

methods for simulation problems that include factorization of 

sparse matrix and partitioning of finite elements meshes for 

parallel programming applications, between others. The GPP 

tends to be NP-hard and optimal solutions for solving them are 

infeasible when the number of vertices of the graph is very large. 

There has been an increased used of heuristic and metaheuristic 

algorithms to solve the PPG to get good results where exceptional 

results are not obtainable by practical means. This article 

proposes an efficient parallel solution to the GPP problem based 

on the implementation of existing heuristics in a computational 

cluster. The proposed solution improves the execution time and, 

by introducing some random features into the original heuristics, 

improve the quality of the created partitions. 
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I.  Introduction 
The Graph Partitioning Problem (GPP) is defined as 

follows: given a graph G = (V, E), where V is the set of 
vertices (or nodes) with their assigned weights and E is the set 
of edges with their assigned weights, we must find k (where k 
is a positive integer) subsets N1, N2, ..., Nk such that: (a) all 
vertices of the original graph are distributed among the subsets 
and those created subsets are disjoints; (b) the sum of the 
weights of the vertices in each subset is approximately equal 
to the weight of all vertices divided by the number of subsets k 
and (c) the cut size, which is the sum of the weights of the 
edges between the among to be minimized [3].  

The GPP-k is the problem of finding k (k > 1) subsets of 
vertices with the lowest possible cut size. In particular, for k = 
2, the GPP finds a bisection. A very common way of solving 
this problem is finding bisections recursively [14, 16]. 

The GPP has several practical applications, such as design 
of VLSI (Very-large-scale integration) circuits, factorization 
of sparse matrix and partitioning of meshes of finite element 
for parallel programming applications [14,16]. The GPP tends 
to be NP-hard [17]. Optimal solutions for solving them are 
infeasible when the number of vertices of the graph is very 
large. There has been an increased use of heuristic and 
metaheuristic algorithms to solve the PPG to get good results 
where exceptional results are not obtainable by practical 
means [16]. R. S. Bonato [4] proposed four heuristic 
algorithms for the GPP using serial algorithms. 

The present work proposes an efficient parallel solution to 
the GPP problem based on the implementation of existing 
heuristics in a computational cluster. The proposed solution 
improves the general performance of the heuristics presented 

in [4] in two aspects: 1) improvement of the execution time, 
with a considerable speedup related to the serial solution and, 
2) improvement of the quality of the created partitions, by 
introducing some random features into the original heuristics. 

II. Performance Metrics 
As mentioned, the performance analysis is based on two 

metrics. First, we consider the cut size of the partitioned 
graph.  In graph theory, a cut is a partition of the vertices of a 
graph into two disjoint subsets that are joined by at least one 
edge. The cut size is the number of edges whose end points are 
in different subsets of the partition. So, the GPP applied in a 
parallel computation problem could be used to divide the 
processing load to each processing node in such way that 
minimizing cut size should represent minimizing the message 
passing between processing nodes. 

The second metric is the speedup. The speedup refers to 
how much a parallel algorithm is faster than a corresponding 
serial algorithm. 

Speedup is defined by the following formula: 

Sp = T1/Tp    (1) 

where: p is the number of processors, T1 is the execution 
time of the serial algorithm and Tp is the execution time of the 
parallel algorithm with p processors. 

Speedup measures can be used to provide an estimate for 
how well a code sped up if it was parallelized, and also 1) to 
generate a plot of time vs. processing nodes to understand the 
behavior of the parallelized code; 2) to see how the parallel 
efficiency tends toward the point of diminishing returns. With 
this information, you would be able to determine, for a fixed 
problem size, what is the optimal number of workers to use. 

III. Graph Partitioning Algorithms 
A great number of Graph Partitioning Algorithms has been 

proposed in the computing science literature in recent years, 
appearing in different fields of application. This section gives 
a general description of those algorithms by describing  some 
general methods of solution that are used to categorize them. 

 Geometrics Methods: The graph partitioning using 
geometric methods are based only on the information 
of the coordinates of each vertex of the graph. 
Therefore, there is not the concept of cutting edges, 
but these methods minimize metrics such as the 
number of vertices of the graph which are adjacent to 
other non-local nodes (size of the border). They tend 
to be faster than spectral methods, but return partitions 
with the worst cuts. Examples are Recursive 
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Coordinate Bisection (RCB) and Recursive Inertial 
Dissection (IBR) [1, 2, 3, 6, 7]. 

 Spectral Methods: Spectral methods do not make 
partitions dealing with the graph itself, but with its 
mathematical representation. The graphs are modeled 
by relaxation of the problem of optimizing a discrete 
quadratic function, being transformed into a 
continuous function. The minimization of the relaxed 
problem is then solved by calculating the second auto-
vector of the Laplacian discretization of the graph. It 
generates good partitions for a wide class of problems. 
Examples are Recursive Spectral Bisection (RSB) and 
Multilevel Recursive Spectral Bisection (RSB 
Multilevel) [1, 6, 8, 9]. 

 Combinatorial Methods: Combinatorial methods 
receive as input a bisection of the graph and try to 
diminish the cut edges by applying a local search 
method. Examples are combinatorial methods of the 
Kernighan-Lin (KL) and Fidducia and Mattheyeses 
(FM). Both methods attempt to exchange vertices 
between the partitions in an try to reduce the cut, with 
the difference that the method KL exchanges pairs of 
vertices, while the FM method exchanges just a 
vertex, alternating between the vertices of each 
partition [3, 5, 10, 11]. 

 Multilevel Methods: The multilevel partitioning 
methods consist of three phases: contraction, 
partitioning and expansion of the graph. In the 
contraction phase, a number of graphs is constructed 
by joining the vertices to form a lower graph. This 
newly built contracted graph is contracted again, and 
so on until a graph small enough is found. A bisection 
of this small graph is made in a very fast way, since 
the graph is small. During the expansion phase, a 
refining method is applied to each level of the graph as 
it is expanded. Multilevel methods are present in many 
packages of software such as Chaco, Metis and Scotch 
[1, 3, 6]. 

 Metaheuristics: A metaheuristic is a set of concepts 
that can be used to define heuristic methods that can 
be applied to a large set of different problems. In other 
words, a metaheuristic can be seen as a general 
algorithmic framework that can be applied to various 
optimization methods with relatively few 
modifications to make them suitable for a specific 
problem. Several metaheuristics have been adapted for 
graph partitioning, such as simulated annealing, tabu 
search and genetic algorithms [12, 13, 14, 15]. 

IV. Proposed Heuristics 
R. S. Bonato [4] proposed four combinatorial heuristics for 

GPP-k, where the first three construct a k-partition of the 
graph at a time until k subsets be created. The fourth heuristic 
is a version of the third heuristic that uses recursive bisections 
to achieve the k subsets. All heuristics presented perform a 
routine of improvement after partitioning in order to refine the 
cut size of each partition.  The basic idea is to build a partition 

of the graph, accumulating vertices in their subsets using a 
given criterion, where the criterion for choosing a vertex to be 
added to the new subset is the difference between the first 
three heuristics, except for the fourth heuristic, which is a 
recursive implementation of the third heuristic. 

1) Heuristic 1: At each iteration of the method of 
construction of the subset in this heuristics, a vertex v is added 
to the subset p and its adjacent vertices are inserted in a list 
called frontier that defines the boundary of the subset p with 
the other subsets. The vertex to be inserted in the subset p is 
randomly selected among the vertices of the border. After the 
insertion of the vertex, the cut size value is updated with the 
gain g(v) of the vertex . 

2) Heuristic 2: In the previous heuristic, the vertices are 
added to the new set being built without any criteria, in a 
random way. In this new heuristic, the main difference is that 
now each vertex belonging to the boundary vertex v has its 
gain g(v) computed and stored in decreasing order of gain 
values in a data structure called bucket. At each step of 
execution, the vertex with higher gain is inserted into the 
expanding set. After inserting the new vertex into that subset, 
the gains of the vertices adjacent to vertex v belonging to its 
boundary are updated and the gains of the vertices that are not 
on the border are inserted into the bucket. 

3) Heuristic 3: As in Heuristic 2, Heuristic 3 computes and 
stores the gains g(v) of each vertex of the boundary of the 
vertex v in descending order. The difference between them is 
that Heuristic 3 chooses a random vertex from a restricted 
subset formed by some vertices (or all) of them that make up 
the border instead of simply taking the vertex with the highest 
gain to compose the new subset p.  

These border vertices are those that involve a smaller 
increase in the size of the cut of the graph. This subset is 
called the Restricted Candidate List (RCL), whose size is 
defined by the parameter α, with α in the range [0, 1]. This 
parameter controls the quality of the vertices of the RCL. 
When α = 0 , the choice of the vertex to be added to the new 
subset is totally greedy, making the algorithm behave exactly 
as Heuristic 2. On the other hand, α = 1 means a completely 
random choice, so that the algorithm will behave like the 
heuristic one. 

4) Heuristic 4: this heuristic is an recursive application of 
Heuristic 3. This fourth heuristic forms a k-partition of the 
graph by applying recursive bisections. The graph is initially 
bisected, then the improvement method is called to refine the 
bisection created, and this strategy is applied recursively on 
the resulting two subsets, and so on. The algorithm builds the 
bisection adding vertices one at a time until the free half of the 
vertices of that subset has been inserted. 

5) Improvement Method: The improvement method is used 
by all proposed heuristics to refine the partial cut of the graph. 
This improvement subroutine receives as parameter two lists, 
one of which is the subset constructed and the other is the list 
of vertices in the boundary of that subset. The subroutine 
attempts to replace vertices from one list to another based on 
the gain g(i) for each vertex i. This represents the gain and the 
cut of the graph decreases if the node i is moved from one 
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subset to another. This refinement technique is similar to the 
FM algorithm. However, while the FM algorithm evaluates all 
vertices of bisection, the proposed improvement method  
evaluates only the vertices of the subset constructed and its 
border [4]. 

V. The Parallel Heuristics 
All the heuristics proposed by R.S. Bonatto [4] have been 

implemented in a multistart configuration in which the 
algorithm builds several partitions and uses only those that 
result in the shortest cut. Thus, more iterations of the 
algorithm means greater probability of finding good partitions. 
In a serial implementation, a high number of repetitions of the 
algorithm could generate a high computational cost (use of 
resources and execution time). 

The heuristics 1, 2 and 3 have been implemented in 
parallel based on the concept of Heuristic 4, which creates 
graph bisections recursively until k subsets of vertices are 
constructed. 

The parallel algorithms were implemented using the Java 
language and using a message passing library (or Message 
Passing Interface-MPI) for sending messages between nodes 
in the cluster called MPJ Express. Furthermore, the algorithm 
considers the use of threads for running on clusters with 
multiprocessor/multicore architecture. 

The main algorithm of the partitions consists of two main 
parts. The first one is executed if the number of nodes used in 
the cluster is equal to one, thus configuring a serial execution. 
The second main part of the algorithm is executed if the 
number of nodes to be used in the cluster is greater than one. 

The parallel algorithm is implemented as follows: two 
loops determine the number of times that the algorithm is 
executed. The external loop with h rounds will be executed 
hmax = log2k times, where k is the final number of partitions of 
the graph. For each iteration of this external loop, an internal 
loop runs 2

h
 times. The internal loop initializes the number of 

threads specified for execution. Each thread then will run a 
number of iterations of partitioning determined by 
configuration and its related improvement routines to improve 
the cut size. At the end of execution, each thread will have 
obtained its best cut in that round. 

The algorithm takes the smaller cut numbers between all 
threads, and stores the initial and final partitions and the 
border of the new created partition, since they will serve as 
input parameters for the next round, if the number of partitions 
of the graph (k) is greater than 2. 

At the beginning, initial partition has all vertices of the 
graph and final partition is empty. At the end of the iteration, 
both partitions have half of the vertices of the initial partition, 
with a difference of at most one vertex. The total value of the 
cut size of the graph is added to the value of this obtained 
smaller cut after the execution of the threads and their 
interactions. A new round h begins if k > 2. 

The main idea behind the parallel partitioner is to 
distribute pairs of partitions of vertices (initial and final) that 

make up a graph in that stage of partitioning for each node of 
the cluster. After that, each node executes the graph 
partitioning algorithm and the best solution with the smaller 
cut number between all of them is selected for that particular 
iteration round in each node. After that, each node returns its 
best solutions to the root node, which includes the smaller cut 
numbers and their respective partitions. 

On each node of the cluster, threads are also initialized 
depending on the number of processors and cores of the node, 
allowing further iterations in an attempt to obtain the lowest 
cut. On each processor in each node of the cluster, the 
algorithm behaves exactly as in the serial version. 

In the parallel implementation , the parallel partitioner also 
runs the main external loop hmax = log2k times , where k is the 
final number of partitions of the graph. An important 
difference considering the serial solutions remains in the fact 
that the parallel partitioner distributes pairs of partitions 
according to specific distribution rules, while the serial 
partitioner works with all partitions without distinction. 

Figure 1 shows an example of execution. 
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Figure 1.  Example of serial partition with 8 partitions. 

The rules of distribution of partitions are as follow: in the 
first round of execution (h = 0), every p (where p is the 
number of nodes in the cluster) nodes in the cluster receive the 
initial and final partitions equal to 0 (containing the vertices 
before partitioning) and 1 (empty before partitions), 
respectively. All nodes work in parallel trying to find the 
lowest cutting and its corresponding partitions. All nodes send 
their best cuts to the root node and the node with the lowest 
cut size sends its initial (0) and final (1) partitions to the root 
node. In the next round of execution (h = 1), the nodes 
numbered (ranked) between 0 and (p/2 – 1) receive partitions 
0 (containing one of the partitions obtained in the previous 
round) and 2 (empty before partitioning), while nodes with 
rank between (p/2) and (p – 1) receive partition 1 (containing 
the other partition obtained in the previous round) and 3 
(empty before partitioning). Now, there are two halves of the 
cluster nodes working in parallel to calculate the smaller cut 
number between partitions 0 and 2 and between partitions 1 
and 3. All nodes send to the root node their best cuttings. 
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Finally, the root takes from all nodes the partitions 0, 1, 2 and 
3 with the smallest calculated cut size. In the following 
rounds, the process is repeated such that in each round the 
number of nodes that perform the partitioning of each pair of 
partitions is halved while the number of partitions obtained in 
each round is duplicated. 

VI. Results 
The algorithms proposed by R.S. Bonatto [4] showed best 

results for graph bisection when compared to multilevel Metis 
and Chaco. According to the study proposed by Bonatto and 
Amaral [4, 16], the Heuristic 3 seems to be the best solution 
considering overall results. Because they are multistart 
algorithms, the serial version had to run 10 times, with 100 
iterations in each one, in order to obtain the best solution. 

Likewise, the parallel version of Heuristic 3 was executed 
10 times, with 100 iterations in each one, with the difference 
that the execution was carried out in a cluster with 16 nodes, 
each one running 16 threads simultaneously, resulting in a 
total 16 x 16 x 100 = 25,600 iterations. The smaller cut 
numbers are shown in the table I. 

TABLE I.  RESULTS OF EXECUTIONS 

Graph Metis Chaco H3 Serial H3 Parallel 

144 6871 6994 7248 7575 

3elt 98 103 93 90 

598a 2470 2484 2476 2463 

add20 741 742 715 646 

add32 19 11 11 11 

airfoil1 85 82 77 74 

Big 165 150 160 146 

CCC5 28 29 16 16 

crack 206 266 194 184 

data 203 234 195 195 

fe_rotor 2146 2230 2161 2107 

fe_tooth 4198 4642 4113 3984 

 

The parallel solution for Heuristic 3 showed no 
improvement in the cut of the graph 144. A variation in the 
configuration of the parallel algorithm of the Heuristic 2 
(purely greedy) results in a better cut. With only 10 runs of 10 
iterations each, running in the same configuration of 16 nodes 
and 16 threads per node in the cluster, the cut of the graph has 
been improved, reaching the value of 6,856. 

Compared with the serial algorithms proposed, the total 
execution time of the parallel algorithm in the cluster was  
higher. But, in essence, we are comparing only 100 iterations 
of the serial solution against 25,600 iterations of the parallel 
algorithm. In the analysis of speedup, when comparing the 
number of iteration of boot solutions, the parallel solution 
presents a significant gain of time and improve the quality of 
the cut. 

 In addition to the improvements made in the cuts of 
bisections, the parallel algorithm brought significant gains in 
speedup. For an increasing number of iterations, the purely 
serial implementation would become unworkable in practice, 
however, the parallel algorithms using both a number of nodes 

in a cluster and also a number of threads in each processing 
node, made the execution times dropped considerably. 

Table II shows different configurations in terms of number 
of nodes, threads and iterations that were considered for 
performance evaluation. For each configuration named by the 
attribute "name", 6,400 iterations are performed. Note that the 
configuration 01n01t simulates serial execution and the others 
its parallel execution in terms of number of processing nodes 
and threads used. 

TABLE II.  TEST SCENARIOS 

Name Nodes Threads Iterations Total 

01n01t 1 1 6,400 6,400 

01n16t 1 16 400 6,400 

02n16t 2 16 200 6,400 

04n16t 4 16 100 6,400 

08n16t 8 16 50 6,400 

 

Table III shows the execution times, in seconds, for the 
different configurations performed for each graph analyzed. 

TABLE III.  EXECUTION TIMES FOR DIFFERENT SCENARIOS 

Graph 01n01t 01n16t 02n16t 04n16t 08n16t 

144 9,987.645 2,267.888 1,825.586 902,987 446,436 

3elt 21,511 5,924 3,569 3,318 1,859 

598a 4,884.235 1,222.244 868,995 428,393 218,654 

add20 12,979 3,608 2,506 1,796 1,431 

add32 12,979 3,608 2,506 1,796 1,431 

airfoil1 19,142 4,206 3,226 2,367 2,419 

Big 84,805 18,077 13,100 7,111 3,701 

CCC5 0,685 1,038 0,693 0,567 0,397 

crack 48,378 9,636 7,439 4,091 2,509 

data 20,819 5,546 4,352 2,161 1,981 

fe_rotor 3,004.040 662,326 466,571 246,643 136,502 

fe_tooth 1,976.274 424,307 327,463 160,237 86,213 

 

The figure 2 shows the average execution time of all 
graphs for each configuration. The curve shows a natural 
decrease of the execution time with the increasing number of 
execution nodes and threads. 

 

Figure 2.  Average execution time for different scenarios showed in Table II. 

 As a result, the parallelization achieves a very good 
rate of speedup, especially observed in the execution of large 
graphs (for example, 144, 598a, fe_rotor). 
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Figure 3.  Average execution time for different scenarios showed in Table II. 

Note that figure 3 shows the average speedup for running 
the parallel solution for all graphs. To calculate the speedup 
for each graph you should use equation (1). For example, the 
speedup of graph 144 running scenario 08n16t is: 

S8= T01n01t / T08n16t = 9.987,645 / 446,436 = 22,37 

VII. Conclusions 
Optimal solutions to graph partitioning with high numbers 

of vertices become computationally infeasible in practice. 
Several heuristics and metaheuristics have been proposed to 
overcome this difficulty. 

The present work proposes an efficient parallel solution to 
the GPP problem based on the implementation of existing 
heuristics in a computational cluster with identical processing 
nodes based on Intel QuadCore processors and supported by 
MPI/Java programming platform. The proposed solution 
improves the general performance of the heuristics presented 
in [4] in two aspects: 1) improvement of the execution time, 
with a considerable speedup related to the serial solution and, 
2) improvement of the quality of the created partitions, by 
introducing some random features into the original heuristics. 

After the parallelization of the heuristics proposed by R.S. 
Bonatto [4], the performance of the parallel solution of 
Heuristic 3 showed improvement in 50% of the cut size of the 
graphs when compared to serial algorithms. In the remaining 
50%, the cuts were at least equal, never worse than in the other 
serial algorithms. 

The Heuristic 3 showed the best results, except for the 
graph 144 that, among all graphs analyzed, is the one with the 
largest number of vertices. In this case, Heuristic 2, purely 
greedy, was more appropriated. The main focus of this work 
was to improve the cut size of the partitioning graph problem. 
However, time savings were also obtained when comparing 
the execution of the same number of iterations of the 
algorithm on an isolated node of the cluster (monothread and 
serial execution) with the implementation of 16 nodes, each 
running 16 threads in parallel. 

In addition to improve graph cuts, time savings were also 
obtained when comparing the execution of the same number 
of iterations of the algorithm on singlethread processor 
(running purely serial) with the execution using 1, 2, 4 and 8 
nodes, each one running 16 threads in parallel. 

As conclusion, the implementation of threads in parallel 
algorithms for use in multi-core processors itself has reduced 
substantially the execution times for graph bisection. 

References 
[1] K. Schloegel, G. Karypis and V. Kumar, “Graph partitioning for high 

performance scientific simulations,” CRPC Parallel Computing 
Handbook. Morgan Kaufmann, 2001. 

[2] C. Ou and S. Ranka, “SPRINT: Scalable Partitioning, Refinement, and 
INcremental partitioning Techniques,” unpublished. 

[3] P.-O. Fjallstrom, “Algorithms for graph partitioning: a survey,” in 
Linkoping Electronic Articles in Computer and Information Science, 
vol. 3, no. 10, 1998. 

[4] R.S. Bonatto, “Algoritmos heurísticos para partição de grafos com 
aplicação em processamento paralelo,” Dissertação de mestrado, 
Universidade Federal do Espírito Santo, Vitória, 2010. 

[5] U. Benlic and J.-K. Hao, “Hybrid metaheuristics for the graph 
partitioning problem,” unpublished. 

[6] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme 
for partitioning irregular graphs,” in Siam J. Sci Comput., vol 20, no 1, 
pp 359-392, 1998. 

[7] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for 
irregular graphs,” in Journal Of Parallel And Distributed Computing, no 
48, pp 96-129, 1998. 

[8] S. Guattery and G. L. Miller, “On the performance of spectral graph 
partitioning methods,” in Sixth Annual ACM/SIAM Symposium on 
Discrete Algorithms, 1995. 

[9] H. Qiu and E. R. Hancock, “Graph matching and clustering using 
spectral partitions,” in Pattern Recognition, no 39, pp 22-24, 2006. 

[10] C. Fiduccia and R. Mattheyeses, “A linear-time heuristic for improving 
network partitions,” in 19th IEEE Design Automation Conference, pp 
175-181, 1982. 

[11] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for 
partitioning graphs,” in The Bell System Technical Journal, pp 291-307, 
1970. 

[12] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, 
“Optimizationby simulated annealing: an experimental evaluation; part I, 
graph partitioning,” Oper. Res., no 37, pp 865-892, 1989. 

[13] E. Rolland, H. Pirkul and F. Glover, “Tabu search for graph 
partiotining,” in Ann. Oper. Res., no 63, pp 209-232, 1996. 

[14] T.N. Bui and B.R. Moon, “Genetic algorithm and graph partiotining,” in 
IEEE Transactions and Computers, no 45, pp 841-855, 1996. 

[15] Dorigo, M. (n.d). Citing Websites. Metaheuristics Network. Retrieved 
May 13, 2013, from http://www.metaheuristics.net 

[16] R.S. Bonatto and A. R. S. Amaral, “Algoritmo heurístico para partição 
de grafos com aplicação em processamento paralelo,” apresentado no 
XLII Congresso da Sociedade Brasileira de Pesquisa Operacional, Bento 
Gonçalves, 2010. 

[17] S.E. Schaeffer, “Graph clustering,” in Computer Science Review, no I, 
pp 27-64, 2007. 

 

About Author (s): 

Roney Pignaton da Silva, São Mateus, 
ES, 08/04/1972. Graduated with a BS from 
Federal University of ES, Brazil in 1997, a 
MS from the Federal University of ES, 
Brazil in 1999, and a PhD from Polytechnic 
University of Madrid, Spain in 2004. He is a 
Professor of Engineering Computing at 
Federal University of ES, Brazil. His current 

research interests include High Performance Parallel Software 
applied to simulation, Network and Telecommunication. 

 

  

International Journal of Advances in Computer Science and Its Applications– IJCSIA 
Volume 4: Issue 2          [ISSN: 2250-3765] 

Publication Date : 25 June 2014 
 


