

15

A Parallel Implementation for Graph Partitioning

Heuristics
 [Leonardo Rogerio Binda da Silva, Roney Pignaton da Silva]

Abstract—The Graph Partitioning Problem (GPP) has several

practical applications in many areas, such as design of VLSI (

Very-large-scale integration) circuits, solution of numerical

methods for simulation problems that include factorization of

sparse matrix and partitioning of finite elements meshes for

parallel programming applications, between others. The GPP

tends to be NP-hard and optimal solutions for solving them are

infeasible when the number of vertices of the graph is very large.

There has been an increased used of heuristic and metaheuristic

algorithms to solve the PPG to get good results where exceptional

results are not obtainable by practical means. This article

proposes an efficient parallel solution to the GPP problem based

on the implementation of existing heuristics in a computational

cluster. The proposed solution improves the execution time and,

by introducing some random features into the original heuristics,

improve the quality of the created partitions.

Keywords— graph partitioning; parallel computing; grasp

algorithms, heuristics

I. Introduction
The Graph Partitioning Problem (GPP) is defined as

follows: given a graph G = (V, E), where V is the set of
vertices (or nodes) with their assigned weights and E is the set
of edges with their assigned weights, we must find k (where k
is a positive integer) subsets N1, N2, ..., Nk such that: (a) all
vertices of the original graph are distributed among the subsets
and those created subsets are disjoints; (b) the sum of the
weights of the vertices in each subset is approximately equal
to the weight of all vertices divided by the number of subsets k
and (c) the cut size, which is the sum of the weights of the
edges between the among to be minimized [3].

The GPP-k is the problem of finding k (k > 1) subsets of
vertices with the lowest possible cut size. In particular, for k =
2, the GPP finds a bisection. A very common way of solving
this problem is finding bisections recursively [14, 16].

The GPP has several practical applications, such as design
of VLSI (Very-large-scale integration) circuits, factorization
of sparse matrix and partitioning of meshes of finite element
for parallel programming applications [14,16]. The GPP tends
to be NP-hard [17]. Optimal solutions for solving them are
infeasible when the number of vertices of the graph is very
large. There has been an increased use of heuristic and
metaheuristic algorithms to solve the PPG to get good results
where exceptional results are not obtainable by practical
means [16]. R. S. Bonato [4] proposed four heuristic
algorithms for the GPP using serial algorithms.

The present work proposes an efficient parallel solution to
the GPP problem based on the implementation of existing
heuristics in a computational cluster. The proposed solution
improves the general performance of the heuristics presented

in [4] in two aspects: 1) improvement of the execution time,
with a considerable speedup related to the serial solution and,
2) improvement of the quality of the created partitions, by
introducing some random features into the original heuristics.

II. Performance Metrics
As mentioned, the performance analysis is based on two

metrics. First, we consider the cut size of the partitioned
graph. In graph theory, a cut is a partition of the vertices of a
graph into two disjoint subsets that are joined by at least one
edge. The cut size is the number of edges whose end points are
in different subsets of the partition. So, the GPP applied in a
parallel computation problem could be used to divide the
processing load to each processing node in such way that
minimizing cut size should represent minimizing the message
passing between processing nodes.

The second metric is the speedup. The speedup refers to
how much a parallel algorithm is faster than a corresponding
serial algorithm.

Speedup is defined by the following formula:

Sp = T1/Tp (1)

where: p is the number of processors, T1 is the execution
time of the serial algorithm and Tp is the execution time of the
parallel algorithm with p processors.

Speedup measures can be used to provide an estimate for
how well a code sped up if it was parallelized, and also 1) to
generate a plot of time vs. processing nodes to understand the
behavior of the parallelized code; 2) to see how the parallel
efficiency tends toward the point of diminishing returns. With
this information, you would be able to determine, for a fixed
problem size, what is the optimal number of workers to use.

III. Graph Partitioning Algorithms
A great number of Graph Partitioning Algorithms has been

proposed in the computing science literature in recent years,
appearing in different fields of application. This section gives
a general description of those algorithms by describing some
general methods of solution that are used to categorize them.

 Geometrics Methods: The graph partitioning using
geometric methods are based only on the information
of the coordinates of each vertex of the graph.
Therefore, there is not the concept of cutting edges,
but these methods minimize metrics such as the
number of vertices of the graph which are adjacent to
other non-local nodes (size of the border). They tend
to be faster than spectral methods, but return partitions
with the worst cuts. Examples are Recursive

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

16

Coordinate Bisection (RCB) and Recursive Inertial
Dissection (IBR) [1, 2, 3, 6, 7].

 Spectral Methods: Spectral methods do not make
partitions dealing with the graph itself, but with its
mathematical representation. The graphs are modeled
by relaxation of the problem of optimizing a discrete
quadratic function, being transformed into a
continuous function. The minimization of the relaxed
problem is then solved by calculating the second auto-
vector of the Laplacian discretization of the graph. It
generates good partitions for a wide class of problems.
Examples are Recursive Spectral Bisection (RSB) and
Multilevel Recursive Spectral Bisection (RSB
Multilevel) [1, 6, 8, 9].

 Combinatorial Methods: Combinatorial methods
receive as input a bisection of the graph and try to
diminish the cut edges by applying a local search
method. Examples are combinatorial methods of the
Kernighan-Lin (KL) and Fidducia and Mattheyeses
(FM). Both methods attempt to exchange vertices
between the partitions in an try to reduce the cut, with
the difference that the method KL exchanges pairs of
vertices, while the FM method exchanges just a
vertex, alternating between the vertices of each
partition [3, 5, 10, 11].

 Multilevel Methods: The multilevel partitioning
methods consist of three phases: contraction,
partitioning and expansion of the graph. In the
contraction phase, a number of graphs is constructed
by joining the vertices to form a lower graph. This
newly built contracted graph is contracted again, and
so on until a graph small enough is found. A bisection
of this small graph is made in a very fast way, since
the graph is small. During the expansion phase, a
refining method is applied to each level of the graph as
it is expanded. Multilevel methods are present in many
packages of software such as Chaco, Metis and Scotch
[1, 3, 6].

 Metaheuristics: A metaheuristic is a set of concepts
that can be used to define heuristic methods that can
be applied to a large set of different problems. In other
words, a metaheuristic can be seen as a general
algorithmic framework that can be applied to various
optimization methods with relatively few
modifications to make them suitable for a specific
problem. Several metaheuristics have been adapted for
graph partitioning, such as simulated annealing, tabu
search and genetic algorithms [12, 13, 14, 15].

IV. Proposed Heuristics
R. S. Bonato [4] proposed four combinatorial heuristics for

GPP-k, where the first three construct a k-partition of the
graph at a time until k subsets be created. The fourth heuristic
is a version of the third heuristic that uses recursive bisections
to achieve the k subsets. All heuristics presented perform a
routine of improvement after partitioning in order to refine the
cut size of each partition. The basic idea is to build a partition

of the graph, accumulating vertices in their subsets using a
given criterion, where the criterion for choosing a vertex to be
added to the new subset is the difference between the first
three heuristics, except for the fourth heuristic, which is a
recursive implementation of the third heuristic.

1) Heuristic 1: At each iteration of the method of
construction of the subset in this heuristics, a vertex v is added
to the subset p and its adjacent vertices are inserted in a list
called frontier that defines the boundary of the subset p with
the other subsets. The vertex to be inserted in the subset p is
randomly selected among the vertices of the border. After the
insertion of the vertex, the cut size value is updated with the
gain g(v) of the vertex .

2) Heuristic 2: In the previous heuristic, the vertices are
added to the new set being built without any criteria, in a
random way. In this new heuristic, the main difference is that
now each vertex belonging to the boundary vertex v has its
gain g(v) computed and stored in decreasing order of gain
values in a data structure called bucket. At each step of
execution, the vertex with higher gain is inserted into the
expanding set. After inserting the new vertex into that subset,
the gains of the vertices adjacent to vertex v belonging to its
boundary are updated and the gains of the vertices that are not
on the border are inserted into the bucket.

3) Heuristic 3: As in Heuristic 2, Heuristic 3 computes and
stores the gains g(v) of each vertex of the boundary of the
vertex v in descending order. The difference between them is
that Heuristic 3 chooses a random vertex from a restricted
subset formed by some vertices (or all) of them that make up
the border instead of simply taking the vertex with the highest
gain to compose the new subset p.

These border vertices are those that involve a smaller
increase in the size of the cut of the graph. This subset is
called the Restricted Candidate List (RCL), whose size is
defined by the parameter α, with α in the range [0, 1]. This
parameter controls the quality of the vertices of the RCL.
When α = 0 , the choice of the vertex to be added to the new
subset is totally greedy, making the algorithm behave exactly
as Heuristic 2. On the other hand, α = 1 means a completely
random choice, so that the algorithm will behave like the
heuristic one.

4) Heuristic 4: this heuristic is an recursive application of
Heuristic 3. This fourth heuristic forms a k-partition of the
graph by applying recursive bisections. The graph is initially
bisected, then the improvement method is called to refine the
bisection created, and this strategy is applied recursively on
the resulting two subsets, and so on. The algorithm builds the
bisection adding vertices one at a time until the free half of the
vertices of that subset has been inserted.

5) Improvement Method: The improvement method is used
by all proposed heuristics to refine the partial cut of the graph.
This improvement subroutine receives as parameter two lists,
one of which is the subset constructed and the other is the list
of vertices in the boundary of that subset. The subroutine
attempts to replace vertices from one list to another based on
the gain g(i) for each vertex i. This represents the gain and the
cut of the graph decreases if the node i is moved from one

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

17

subset to another. This refinement technique is similar to the
FM algorithm. However, while the FM algorithm evaluates all
vertices of bisection, the proposed improvement method
evaluates only the vertices of the subset constructed and its
border [4].

V. The Parallel Heuristics
All the heuristics proposed by R.S. Bonatto [4] have been

implemented in a multistart configuration in which the
algorithm builds several partitions and uses only those that
result in the shortest cut. Thus, more iterations of the
algorithm means greater probability of finding good partitions.
In a serial implementation, a high number of repetitions of the
algorithm could generate a high computational cost (use of
resources and execution time).

The heuristics 1, 2 and 3 have been implemented in
parallel based on the concept of Heuristic 4, which creates
graph bisections recursively until k subsets of vertices are
constructed.

The parallel algorithms were implemented using the Java
language and using a message passing library (or Message
Passing Interface-MPI) for sending messages between nodes
in the cluster called MPJ Express. Furthermore, the algorithm
considers the use of threads for running on clusters with
multiprocessor/multicore architecture.

The main algorithm of the partitions consists of two main
parts. The first one is executed if the number of nodes used in
the cluster is equal to one, thus configuring a serial execution.
The second main part of the algorithm is executed if the
number of nodes to be used in the cluster is greater than one.

The parallel algorithm is implemented as follows: two
loops determine the number of times that the algorithm is
executed. The external loop with h rounds will be executed
hmax = log2k times, where k is the final number of partitions of
the graph. For each iteration of this external loop, an internal
loop runs 2

h
 times. The internal loop initializes the number of

threads specified for execution. Each thread then will run a
number of iterations of partitioning determined by
configuration and its related improvement routines to improve
the cut size. At the end of execution, each thread will have
obtained its best cut in that round.

The algorithm takes the smaller cut numbers between all
threads, and stores the initial and final partitions and the
border of the new created partition, since they will serve as
input parameters for the next round, if the number of partitions
of the graph (k) is greater than 2.

At the beginning, initial partition has all vertices of the
graph and final partition is empty. At the end of the iteration,
both partitions have half of the vertices of the initial partition,
with a difference of at most one vertex. The total value of the
cut size of the graph is added to the value of this obtained
smaller cut after the execution of the threads and their
interactions. A new round h begins if k > 2.

The main idea behind the parallel partitioner is to
distribute pairs of partitions of vertices (initial and final) that

make up a graph in that stage of partitioning for each node of
the cluster. After that, each node executes the graph
partitioning algorithm and the best solution with the smaller
cut number between all of them is selected for that particular
iteration round in each node. After that, each node returns its
best solutions to the root node, which includes the smaller cut
numbers and their respective partitions.

On each node of the cluster, threads are also initialized
depending on the number of processors and cores of the node,
allowing further iterations in an attempt to obtain the lowest
cut. On each processor in each node of the cluster, the
algorithm behaves exactly as in the serial version.

In the parallel implementation , the parallel partitioner also
runs the main external loop hmax = log2k times , where k is the
final number of partitions of the graph. An important
difference considering the serial solutions remains in the fact
that the parallel partitioner distributes pairs of partitions
according to specific distribution rules, while the serial
partitioner works with all partitions without distinction.

Figure 1 shows an example of execution.

A

B C

D E F G

h = 0

h = 1

h = 2

0
1

0
2

1
3

0
4

2
6

1
5

3
7

0

4

2

6

1

5

3

7

Partitions found

Figure 1. Example of serial partition with 8 partitions.

The rules of distribution of partitions are as follow: in the
first round of execution (h = 0), every p (where p is the
number of nodes in the cluster) nodes in the cluster receive the
initial and final partitions equal to 0 (containing the vertices
before partitioning) and 1 (empty before partitions),
respectively. All nodes work in parallel trying to find the
lowest cutting and its corresponding partitions. All nodes send
their best cuts to the root node and the node with the lowest
cut size sends its initial (0) and final (1) partitions to the root
node. In the next round of execution (h = 1), the nodes
numbered (ranked) between 0 and (p/2 – 1) receive partitions
0 (containing one of the partitions obtained in the previous
round) and 2 (empty before partitioning), while nodes with
rank between (p/2) and (p – 1) receive partition 1 (containing
the other partition obtained in the previous round) and 3
(empty before partitioning). Now, there are two halves of the
cluster nodes working in parallel to calculate the smaller cut
number between partitions 0 and 2 and between partitions 1
and 3. All nodes send to the root node their best cuttings.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

18

Finally, the root takes from all nodes the partitions 0, 1, 2 and
3 with the smallest calculated cut size. In the following
rounds, the process is repeated such that in each round the
number of nodes that perform the partitioning of each pair of
partitions is halved while the number of partitions obtained in
each round is duplicated.

VI. Results
The algorithms proposed by R.S. Bonatto [4] showed best

results for graph bisection when compared to multilevel Metis
and Chaco. According to the study proposed by Bonatto and
Amaral [4, 16], the Heuristic 3 seems to be the best solution
considering overall results. Because they are multistart
algorithms, the serial version had to run 10 times, with 100
iterations in each one, in order to obtain the best solution.

Likewise, the parallel version of Heuristic 3 was executed
10 times, with 100 iterations in each one, with the difference
that the execution was carried out in a cluster with 16 nodes,
each one running 16 threads simultaneously, resulting in a
total 16 x 16 x 100 = 25,600 iterations. The smaller cut
numbers are shown in the table I.

TABLE I. RESULTS OF EXECUTIONS

Graph Metis Chaco H3 Serial H3 Parallel

144 6871 6994 7248 7575

3elt 98 103 93 90

598a 2470 2484 2476 2463

add20 741 742 715 646

add32 19 11 11 11

airfoil1 85 82 77 74

Big 165 150 160 146

CCC5 28 29 16 16

crack 206 266 194 184

data 203 234 195 195

fe_rotor 2146 2230 2161 2107

fe_tooth 4198 4642 4113 3984

The parallel solution for Heuristic 3 showed no
improvement in the cut of the graph 144. A variation in the
configuration of the parallel algorithm of the Heuristic 2
(purely greedy) results in a better cut. With only 10 runs of 10
iterations each, running in the same configuration of 16 nodes
and 16 threads per node in the cluster, the cut of the graph has
been improved, reaching the value of 6,856.

Compared with the serial algorithms proposed, the total
execution time of the parallel algorithm in the cluster was
higher. But, in essence, we are comparing only 100 iterations
of the serial solution against 25,600 iterations of the parallel
algorithm. In the analysis of speedup, when comparing the
number of iteration of boot solutions, the parallel solution
presents a significant gain of time and improve the quality of
the cut.

 In addition to the improvements made in the cuts of
bisections, the parallel algorithm brought significant gains in
speedup. For an increasing number of iterations, the purely
serial implementation would become unworkable in practice,
however, the parallel algorithms using both a number of nodes

in a cluster and also a number of threads in each processing
node, made the execution times dropped considerably.

Table II shows different configurations in terms of number
of nodes, threads and iterations that were considered for
performance evaluation. For each configuration named by the
attribute "name", 6,400 iterations are performed. Note that the
configuration 01n01t simulates serial execution and the others
its parallel execution in terms of number of processing nodes
and threads used.

TABLE II. TEST SCENARIOS

Name Nodes Threads Iterations Total

01n01t 1 1 6,400 6,400

01n16t 1 16 400 6,400

02n16t 2 16 200 6,400

04n16t 4 16 100 6,400

08n16t 8 16 50 6,400

Table III shows the execution times, in seconds, for the
different configurations performed for each graph analyzed.

TABLE III. EXECUTION TIMES FOR DIFFERENT SCENARIOS

Graph 01n01t 01n16t 02n16t 04n16t 08n16t

144 9,987.645 2,267.888 1,825.586 902,987 446,436

3elt 21,511 5,924 3,569 3,318 1,859

598a 4,884.235 1,222.244 868,995 428,393 218,654

add20 12,979 3,608 2,506 1,796 1,431

add32 12,979 3,608 2,506 1,796 1,431

airfoil1 19,142 4,206 3,226 2,367 2,419

Big 84,805 18,077 13,100 7,111 3,701

CCC5 0,685 1,038 0,693 0,567 0,397

crack 48,378 9,636 7,439 4,091 2,509

data 20,819 5,546 4,352 2,161 1,981

fe_rotor 3,004.040 662,326 466,571 246,643 136,502

fe_tooth 1,976.274 424,307 327,463 160,237 86,213

The figure 2 shows the average execution time of all
graphs for each configuration. The curve shows a natural
decrease of the execution time with the increasing number of
execution nodes and threads.

Figure 2. Average execution time for different scenarios showed in Table II.

 As a result, the parallelization achieves a very good
rate of speedup, especially observed in the execution of large
graphs (for example, 144, 598a, fe_rotor).

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

19

Figure 3. Average execution time for different scenarios showed in Table II.

Note that figure 3 shows the average speedup for running
the parallel solution for all graphs. To calculate the speedup
for each graph you should use equation (1). For example, the
speedup of graph 144 running scenario 08n16t is:

S8= T01n01t / T08n16t = 9.987,645 / 446,436 = 22,37

VII. Conclusions
Optimal solutions to graph partitioning with high numbers

of vertices become computationally infeasible in practice.
Several heuristics and metaheuristics have been proposed to
overcome this difficulty.

The present work proposes an efficient parallel solution to
the GPP problem based on the implementation of existing
heuristics in a computational cluster with identical processing
nodes based on Intel QuadCore processors and supported by
MPI/Java programming platform. The proposed solution
improves the general performance of the heuristics presented
in [4] in two aspects: 1) improvement of the execution time,
with a considerable speedup related to the serial solution and,
2) improvement of the quality of the created partitions, by
introducing some random features into the original heuristics.

After the parallelization of the heuristics proposed by R.S.
Bonatto [4], the performance of the parallel solution of
Heuristic 3 showed improvement in 50% of the cut size of the
graphs when compared to serial algorithms. In the remaining
50%, the cuts were at least equal, never worse than in the other
serial algorithms.

The Heuristic 3 showed the best results, except for the
graph 144 that, among all graphs analyzed, is the one with the
largest number of vertices. In this case, Heuristic 2, purely
greedy, was more appropriated. The main focus of this work
was to improve the cut size of the partitioning graph problem.
However, time savings were also obtained when comparing
the execution of the same number of iterations of the
algorithm on an isolated node of the cluster (monothread and
serial execution) with the implementation of 16 nodes, each
running 16 threads in parallel.

In addition to improve graph cuts, time savings were also
obtained when comparing the execution of the same number
of iterations of the algorithm on singlethread processor
(running purely serial) with the execution using 1, 2, 4 and 8
nodes, each one running 16 threads in parallel.

As conclusion, the implementation of threads in parallel
algorithms for use in multi-core processors itself has reduced
substantially the execution times for graph bisection.

References
[1] K. Schloegel, G. Karypis and V. Kumar, “Graph partitioning for high

performance scientific simulations,” CRPC Parallel Computing
Handbook. Morgan Kaufmann, 2001.

[2] C. Ou and S. Ranka, “SPRINT: Scalable Partitioning, Refinement, and
INcremental partitioning Techniques,” unpublished.

[3] P.-O. Fjallstrom, “Algorithms for graph partitioning: a survey,” in
Linkoping Electronic Articles in Computer and Information Science,
vol. 3, no. 10, 1998.

[4] R.S. Bonatto, “Algoritmos heurísticos para partição de grafos com
aplicação em processamento paralelo,” Dissertação de mestrado,
Universidade Federal do Espírito Santo, Vitória, 2010.

[5] U. Benlic and J.-K. Hao, “Hybrid metaheuristics for the graph
partitioning problem,” unpublished.

[6] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” in Siam J. Sci Comput., vol 20, no 1,
pp 359-392, 1998.

[7] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” in Journal Of Parallel And Distributed Computing, no
48, pp 96-129, 1998.

[8] S. Guattery and G. L. Miller, “On the performance of spectral graph
partitioning methods,” in Sixth Annual ACM/SIAM Symposium on
Discrete Algorithms, 1995.

[9] H. Qiu and E. R. Hancock, “Graph matching and clustering using
spectral partitions,” in Pattern Recognition, no 39, pp 22-24, 2006.

[10] C. Fiduccia and R. Mattheyeses, “A linear-time heuristic for improving
network partitions,” in 19th IEEE Design Automation Conference, pp
175-181, 1982.

[11] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” in The Bell System Technical Journal, pp 291-307,
1970.

[12] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon,
“Optimizationby simulated annealing: an experimental evaluation; part I,
graph partitioning,” Oper. Res., no 37, pp 865-892, 1989.

[13] E. Rolland, H. Pirkul and F. Glover, “Tabu search for graph
partiotining,” in Ann. Oper. Res., no 63, pp 209-232, 1996.

[14] T.N. Bui and B.R. Moon, “Genetic algorithm and graph partiotining,” in
IEEE Transactions and Computers, no 45, pp 841-855, 1996.

[15] Dorigo, M. (n.d). Citing Websites. Metaheuristics Network. Retrieved
May 13, 2013, from http://www.metaheuristics.net

[16] R.S. Bonatto and A. R. S. Amaral, “Algoritmo heurístico para partição
de grafos com aplicação em processamento paralelo,” apresentado no
XLII Congresso da Sociedade Brasileira de Pesquisa Operacional, Bento
Gonçalves, 2010.

[17] S.E. Schaeffer, “Graph clustering,” in Computer Science Review, no I,
pp 27-64, 2007.

About Author (s):

Roney Pignaton da Silva, São Mateus,
ES, 08/04/1972. Graduated with a BS from
Federal University of ES, Brazil in 1997, a
MS from the Federal University of ES,
Brazil in 1999, and a PhD from Polytechnic
University of Madrid, Spain in 2004. He is a
Professor of Engineering Computing at
Federal University of ES, Brazil. His current

research interests include High Performance Parallel Software
applied to simulation, Network and Telecommunication.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

