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Abstract—Simulation of cloud computing systems remains to 

be a challenge due to the high number of issues that hamper this 

task. Basically, the main issue for achieving simulations of cloud 

systems is two-fold. First, the enormous amount of time required 

to execute those simulations. Second, the large amounts of 

memory required for simulating the high number of elements 

that constitute the model. In most cases, those systems contain 

thousands of computing nodes, tens of storage nodes, 

communication networks, and communication switches, whereof 

the algorithms required for modelling and simulating all those 

elements require huge amounts of CPU power. In this paper we 

present a complementation for INET, a framework used for 

modelling and simulating networks in cloud systems models. 
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I.  Introduction 
Nowadays, cloud computing systems are increasing their role 

due to the fast evolution on computer networks and 

communication technologies. Those systems grow more 

complex with each generation, becoming a difficult and time-

consuming task analysing and predicting their behaviour. It 

makes simulators a very important choice for designing and 

analysing large and complex architectures. Network behaviour 

is one of the main assets in this kind of simulations. On the 

one hand, network performance has a critical impact on the 

overall system performance. On the other hand, the strategy 

used for modelling and simulating the network system is the 

key for obtaining a simulation with the level of detail, 

performance and scalability required. 

Simulation of cloud systems is currently a fashion topic. In 

most cases, the simulations require a great computer power to 

be executed. Basically, the main issue for achieving 

simulations of cloud systems is two-fold. First, the enormous 

amount of time required to execute the simulation. Second, the 

large amount of memory required for simulating the vast 

number of elements that constitute the model. In most cases, 

systems contain thousands of computing nodes, tens of storage 

nodes, communication networks, and communication 

switches, whereof the algorithms required for modelling and 

simulating all those elements require huge amounts of CPU 

power. 
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The state of the art shows several simulation frameworks for 

modelling these kind of systems. All of them ease many of the 

tasks required to develop simulations. One of these simulation 

frameworks that is gaining momentum is the INET simulation 

framework [1]. INET has been developed as a module on top 

of the more generic OMNeT++ simulation framework [2]. The 

INET framework allows an easy development of computing 

network simulations. It also allows a high level of detail and it 

can be scaled, with little effort, up to the existing computer 

power. Furthermore, INET can easily work with any other 

simulated subsystem built on top of OMNeT++ (processor, 

memory, I/O, power management, etc). 

OMNeT++ is a C++ discrete event simulator designed for 

modelling computing networks and parallel and distributed 

systems. OMNeT++ is adequate for large-scale simulations 

because it uses hierarchical models and reusable components. 

The INET framework is an open-source network simulation 

package built upon OMNeT++ that uses the same concept: 

modules communicating by message passing. This framework 

contains IPv4, IPv6, TCP, UDP protocol implementations. 

Supported link-layer models are PPP, Ethernet and 802.11. 

The main problem with the INET framework is its lack of 

scalability, because it is not adapted to develop parallel 

simulations. Thus, it is limited to the capacity of a single 

computer, even though the underlying OMNeT++ offers 

facilities to develop parallel simulations. For this reason we 

decided to parallelize the INET framework by removing the 

existing scalability restrictions and providing the capacity for 

developing parallel simulations. 

The limitations found in INET when we tried to simulate 

large-scale systems are in the genesis of this work. In order to 

accomplish our research studies, we demonstrate the 

usefulness of our proposal by using the iCanCloud simulator 

[3] to simulate, in parallel, cloud systems following the 

methodology described in this work. 

The rest of the paper is structured as follows. Section II 

presents some related works. Section III describes the 

motivation for increasing the performance for simulating 

highly distributed systems. Section IV describes our proposal 

to increase the scalability for simulating large scenarios. 

Section V shows several performance experiments. Finally, 

Section VI presents some conclusions and future work. 

II. Related Work 
At present we have found in literature some works to increase 

both scalability and performance in simulations. 
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The authors of [4] describe an ad-hoc simulation approach, as 

well as an optimistic synchronization algorithm. An ad-hoc 

distributed simulation is a collection of autonomous on-line 

simulations brought together to model an operational system. 

They offer the potential of increased accuracy, responsiveness, 

and robustness compared to centralized approaches. This work 

differs from conventional distributed simulations in that it has 

been created bottom-up rather than top-down. Other works 

based on online simulation are DDDAS [5] and the LEAD 

project [6]. 

The work described in [7] presents a parallel SystemC 

simulation kernel, which is implemented using parallel 

programming techniques and leverages the parallel execution 

capabilities of multi-core machines to speed up hardware 

simulation. In this work [8], the authors propose a machine-

learning algorithm as an aid in making decisions about the 

simulation execution. The algorithm is based on the well-

known K-Nearest Neighbour algorithm. After an extensive 

training regime, it was shown to make a correct prediction 

99% of the time on whether to use a parallel or sequential 

simulator. The author of [9] describes a parallel processing 

method for simulations of large-scale networks with a hybrid 

traffic representation combining both a time-stepped fluid 

model and a discrete-event packet-oriented model. This paper 

also shows the benefit of the parallel hybrid model through a 

series of simulation experiments of a large-scale network 

consisting of over 170,000 hosts and 1.6 million traffic flows 

on a small parallel cluster. 

III. Motivation and main goals 
The worst-case scenario for simulating cloud systems arises 

when those simulations require a great level of detail and a 

high level of scalability. In these cases a great computer power 

is necessary and performing those kinds of simulations in a 

single computer, using sequential simulation techniques, is not 

feasible due to the lack of scalability. This limitation lies 

basically in the computer power and memory provided by the 

single machine in which simulation is executed. In this case, 

large-scale models can take weeks, and even months of 

simulation time, therefore, much more CPU power is required 

to obtain results in a reasonable time-frame. 

Nowadays, the best way to obtain this kind of computing 

power is to use parallel computing systems, like clusters. 

Those systems require the developing of parallel applications 

that differs from traditional applications. Parallel applications 

consist of several computing processes that work coordinated 

by interchanging information (usually using message passing 

methods). Then, a feasible solution is to use parallel 

simulation techniques for simulating large-scale environments 

that require both great amounts of processing power and 

memory. This is the reason why simulators of distributed 

systems must provide scalability. In this context, scalability 

means whether the corresponding simulator is able to simulate 

with enough performance large-scale systems, by increasing 

the number of machines, which make up the corresponding 

architecture to be simulated. Likewise, performance 

determines the speed which a simulator executes a 

corresponding simulation. In general, the larger the size of the 

architecture to be simulated, the greater the time needed to 

execute the simulation. 

In this paper we propose an approach to perform parallel 

simulations of large-scale models using the INET framework. 

As we said in section 1, SIMCAN has been built upon the 

OMNeT++ framework. The reason to choose OMNeT++ as 

base framework is that it is popular in academia for its 

extensibility since it is also open sourced and there are 

plentiful online documentations. Moreover, several open 

source simulation models have been published in the field of 

network simulations such as IP, IPv6, MPLS, mobility and ad-

hoc simulations. Similarly, the INET framework is a well-

known framework for modeling and simulating the network 

system. Moreover, a lot of research works use it, as ReaSE 

[10,11], MiXiM [12], xMIPv6 [13] and  overSIM [14], just to 

name few. Therefore, our proposal is not only focused on a 

specific simulation platform. Instead, any simulator or tool 

that uses the INET framework for modeling and simulating the 

network system can take advantage of this approach for 

performing parallel simulations. 

IV. Increasing scalability in large 
simulations 

OMNeT++ simulation programs have to assign manually 

which modules will share the same computing node. This is 

done by classifying the modules into logical partitions (LPs). 

Each logical partition will be executed on a different 

computing node. This classification has to be performed 

before the execution of the simulation, because there is no way 

to perform a dynamic classification during execution time.  

In order to locate and reference the remote modules, 

OMNeT++ uses "placeholders". An OMNeT++ placeholder is 

just a proxy of a remote module placed on the partition instead 

of the original one. Its mission is to forward all the messages 

to the remote module itself. All the partitions of the computing 

nodes have a placeholder for each one of their remote high-

level modules. A compound module can have their sub-

modules spread across some nodes. In this case, the compound 

module is duplicated on all the corresponding nodes, and the 

remote sub-modules are replaced by placeholders. 

The INET framework is not able to perform parallel 

simulations. These simulations cannot be executed on a single 

computer because of the lack of memory or the computing 

time required. OMNeT++ applies the message-passing 

paradigm to implement parallel simulation (MPI [15]). The 

main issue of performing parallel simulations lies in the 

method of assigning both network and MAC addresses to the 

nodes and switches of the modelled environment. 

International Journal of Advances in Computer Science and Its Applications– IJCSIA 
Volume 4: Issue 2          [ISSN: 2250-3765] 

Publication Date : 25 June 2014 



 

12 

 

It is important to remark that, in parallel simulations, the 

model is split in different sub-domains, called partitions, in 

which a part of the model is executed in a single computer. 

Therefore, using different machines, each executing a part of 

the complete model, the simulation can share resources of 

these nodes, like CPU and memory. However, the 

performance of using parallel simulation must consider the 

overhead caused by synchronizing these partitions. 

Since each partition is in charge of managing a sub-set of 

modules from the model, the local view of each partition is not 

able to see the rest of the modules. Hence, a local partition 

does not know how many other nodes or switches must be 

configured in foreign partitions. Therefore, the main difficulty 

lies in how to assign IP and MAC addresses without repeating 

the same address in different partitions. 

Currently, INET uses a module called Flat Network 

Configurator (FNC).  This module assigns IP and MAC 

addresses automatically in execution time. This solution works 

fine for sequential simulation because the FNC module has 

access to all modules involved in the simulation. Thus, both IP 

and MAC addresses can be assigned. However, this is not a 

feasible solution for simulating cloud systems, where 

thousands of physical machines have to be simulated. The 

problem arises in parallel simulations, where each FNC is 

executed in a different partition. Each FNC only has access to 

those modules executed in the same partition, but not to the 

rest of the modules simulated in other partition. Hence, a 

mechanism of synchronization is required among all the 

partitions to cooperate and assign the corresponding IP and 

MAC addresses without collisions. 

Figure 1 shows a network model made up of 8 computing 

nodes and 2 switches. In this example, the simulation is 

executed sequentially. The FNC has access to all modules that 

compose the model and it can assign IP and MAC addresses to 

the modules that need one. 

 

Fig 1 Sequential simulation example 

Figure 2 shows an example of a parallel simulation 

corresponding to the model shown in Figure 1. In this example 

the complete model is simulated using two LPs, where LP_0 is 

in charge of simulating switch_0 and computing nodes 0, 1, 2 

and 3. LP_1 is in charge of simulating switch_1 and 

computing nodes 4, 5, 6 and 7. 

 

Fig 2 Parallel simulation schema 

From the LP_0 point of view there are only 5 modules: 

Switch_0 and node 0, 1, 2 and 3. LP_0 knows that other 5 

modules exist, but it does not know the type of the modules, or 

if those modules need an IP address or a MAC address. These 

kind of modules are placeholders, represented in Figure 2 by 

grey squares. The FNC of each partition has no access to the 

complete list of modules that need an IP or a MAC address. 

Consequently, it cannot assign the addresses correctly, and it 

cannot avoid repeated addresses.  

We propose a method to assign appropriately both IPs and 

MAC addresses to all the nodes and switches in a distributed 

cloud model. The solution basically consists on using a new 

module called Parallel Network Configurator (PNC). The 

main purpose of this module is to build a complete list of those 

modules that require an IP address or a MAC address. Each 

LP must contain one PNC module (see Figure 2). 

At initialization stage, each PNC builds a list that contains the 

local modules that require an address. Then, this module 

writes the list to a file, which is stored in a file system shared 

by all partitions (step 1 and 2). 

When all those files are created, each PNC has to read them 

(step 3 and 4). Those files are merged with the purpose to 

create a unique list for each kind of addresses. Therefore, each 

PNC contains a complete list of those modules that need IP or 

MAC addresses. In this way, each PNC can assign both IP and 

MAC addresses correctly by avoiding collisions. 

Finally, this process is used when a pair of modules, placed in 

different LPs, requests to create a network connection. In this 

case, the PNC module offers the facility to translate the name 

of the destination module to its corresponding IP address. This 

is done by seeking on the list those modules that use IP 

address created by the PNC. 

V. Performance experiments 
In this section, we report the results of a set of simulation 

experiments that have been perrformed. The main goal of 
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those experiments is to check both the scalability and 

performance obtained using the proposal described in this 

work. 

A data-center of a cloud system has been modelled by using 

both INET and iCanCloud. This model represents a data-

center that consists of 6 elements: 

 Rack: It is used in order to group computing nodes in large-

scale systems. Due to managing large amounts of nodes 

hampers the task of configuring the entire system, racks 

contain a set of board nodes in order to ease deploying tasks. 

 Board node: It is used with the same purpose as racks, for 

grouping and managing nodes. This element contains a set of 

computing nodes and one switch. The switch is used for 

interconnecting the set of nodes inside a node board with the 

rest of the architecture. 

 Node: It is used to perform processing. Usually the nodes 

contain a set of CPU cores for executing several processes in 

parallel. 

 Storage node: These elements are used for managing data. 

 Switches: They are used for interconnecting the elements of 

the distributed architecture. 

 Communication network: It defines the speed of each 

communication link in the architecture. 

The modelled data-center contains 1024 nodes, grouped in 8 

racks, where each rack contains 8 board-nodes. Each board 

node contains 16 nodes. The number of storage nodes used is 

16. Finally, the network used is an Ethernet 10 Gbps. 

The behaviour of a map-reduce based application has been 

modelled to achieve the simulation experiments. Basically, the 

application model used in this work is a simplified version of 

the map-reduce model proposed by Google [16]. This model 

uses an initial data-set as the size of the problem. By size of 

the problem we mean the amount of data that has to be 

processed in order to accomplish the execution of the 

application completely. The size of the data-set used in those 

experiments is 128 GB.    

In the experiments, the complete model is distributed among a 

set of LPs. Each LP is executed on a single machine, and MPI 

is used to communicate and synchronizing the set of LPs. In 

order to split the model in a set of LPs, every element of the 

model has to be allocated to a specific LP. We have 

considered the next three modules as indivisible blocks to 

perform this process: racks, switches and storage nodes. That 

is, all the elements contained in the same block will be 

executed in the same machine. For instance, all nodes included 

in the same rack are located in the same LP, therefore all of 

them  will be executed in the same machine. 

The simulation experiments have been executed using two 

different methods for splitting the model. Each method uses a 

different strategy for allocating each block of elements to a 

LP. 

The first method consists on allocating each block of elements 

to a corresponding partition using a random distribution. On 

the contrary, the second method uses domains to achieve the 

allocation of each block. In this case, we define domain as a 

group of elements which probability to share a communication 

link to interchange data is high. For example, two racks that 

are connected to the same switch have a high probability to 

interchange data between them. The main goal of this method 

is to reduce the communication overhead among 

communicating elements executed in different LPs. 

The simulation has been executed in a 16-node cluster. Each 

node contains an Intel Xeon CPU 2.00Ghz and 4 GB of RAM 

memory. 

Figure 3 shows the execution time of the simulation 

experiments using the two previously described allocation 

methods. First, we can see that using parallel simulation, the 

performance obtained is clearly improved. That is due to the 

fact that several machines work in parallel for simulating the 

complete model. This chart also shows that the improvement 

of the performance obtained when the number of LPs 

increases does not follow a linear tendency. This is caused 

because of the communication overhead, necessary to 

synchronize all LPs in the model. The greater the number of 

LPs, the greater the overhead to synchronize the complete 

model. However, this overhead can be alleviated by using the 

technique of grouping elements into domains, instead of 

allocating blocks to LPs randomly.  

When 8 and 16 LPs are used, performance obtained is 

practically identical. The cause of this lies in the architecture 

of the model to simulate, which contains 8 racks. Therefore, 

the level of parallelism cannot be increased by distributing the 

racks in 16 LPs. Furthermore, the level of parallelism obtained 

for simulating the storage nodes in parallel is lost by the 

overhead caused to synchronize the LPs that contain them. 

 
Fig 3 Time required to simulate the cloud model 

Figure 4 shows the amount of memory required for executing 

each experiment. Those results show that the memory 

requirements for both allocation methods are practically the 

same. Using a grouped allocation consumes slightly less 
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memory than random allocation, but it is almost insignificant. 

It is worth to note that parallel simulations require almost the 

same memory that sequential simulations. However, using 

parallel simulation provides more scalability because the 

model is not limited to the memory provided by a single 

machine. Instead, the sum of the memories where the 

simulation is executed can be used. 

 
Fig 4 Amount of memory required to simulate the cloud model 

 

VI. Conclusions and Future work 
In this work we have presented the parallelization of the INET 

framework. This method consists on generating both IP and 

MAC addresses appropriately among the different partitions 

that execute the simulation. In order to demonstrate the 

usefulness of our proposal, a cloud computing data-center has 

been modelled and simulated.  

 

The solution developed relies on a Parallel Network 

Configurator that alleviates the problem of configuring the 

network features in a large environment. The results of the 

simulation show that our proposal increases both the 

scalability and performance for simulating cloud systems. 

 

Future works will include increasing the size of the model and 

the number of nodes for performing parallel simulations. 
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