

10

On the Scalability of Simulating Cloud Systems

1
Alberto Núñez,

1
Manuel Núñez,

1
Mercedes G. Merayo and

2
Sergio Núñez

Abstract—Simulation of cloud computing systems remains to

be a challenge due to the high number of issues that hamper this

task. Basically, the main issue for achieving simulations of cloud

systems is two-fold. First, the enormous amount of time required

to execute those simulations. Second, the large amounts of

memory required for simulating the high number of elements

that constitute the model. In most cases, those systems contain

thousands of computing nodes, tens of storage nodes,

communication networks, and communication switches, whereof

the algorithms required for modelling and simulating all those

elements require huge amounts of CPU power. In this paper we

present a complementation for INET, a framework used for

modelling and simulating networks in cloud systems models.

Keywords—Simulation, Modelling of Cloud Systems

I. Introduction
Nowadays, cloud computing systems are increasing their role

due to the fast evolution on computer networks and

communication technologies. Those systems grow more

complex with each generation, becoming a difficult and time-

consuming task analysing and predicting their behaviour. It

makes simulators a very important choice for designing and

analysing large and complex architectures. Network behaviour

is one of the main assets in this kind of simulations. On the

one hand, network performance has a critical impact on the

overall system performance. On the other hand, the strategy

used for modelling and simulating the network system is the

key for obtaining a simulation with the level of detail,

performance and scalability required.

Simulation of cloud systems is currently a fashion topic. In

most cases, the simulations require a great computer power to

be executed. Basically, the main issue for achieving

simulations of cloud systems is two-fold. First, the enormous

amount of time required to execute the simulation. Second, the

large amount of memory required for simulating the vast

number of elements that constitute the model. In most cases,

systems contain thousands of computing nodes, tens of storage

nodes, communication networks, and communication

switches, whereof the algorithms required for modelling and

simulating all those elements require huge amounts of CPU

power.

1
 University Complutense of Madrid, Spain

2 University Carlos III of Madrid, Spain

The state of the art shows several simulation frameworks for

modelling these kind of systems. All of them ease many of the

tasks required to develop simulations. One of these simulation

frameworks that is gaining momentum is the INET simulation

framework [1]. INET has been developed as a module on top

of the more generic OMNeT++ simulation framework [2]. The

INET framework allows an easy development of computing

network simulations. It also allows a high level of detail and it

can be scaled, with little effort, up to the existing computer

power. Furthermore, INET can easily work with any other

simulated subsystem built on top of OMNeT++ (processor,

memory, I/O, power management, etc).

OMNeT++ is a C++ discrete event simulator designed for

modelling computing networks and parallel and distributed

systems. OMNeT++ is adequate for large-scale simulations

because it uses hierarchical models and reusable components.

The INET framework is an open-source network simulation

package built upon OMNeT++ that uses the same concept:

modules communicating by message passing. This framework

contains IPv4, IPv6, TCP, UDP protocol implementations.

Supported link-layer models are PPP, Ethernet and 802.11.

The main problem with the INET framework is its lack of

scalability, because it is not adapted to develop parallel

simulations. Thus, it is limited to the capacity of a single

computer, even though the underlying OMNeT++ offers

facilities to develop parallel simulations. For this reason we

decided to parallelize the INET framework by removing the

existing scalability restrictions and providing the capacity for

developing parallel simulations.

The limitations found in INET when we tried to simulate

large-scale systems are in the genesis of this work. In order to

accomplish our research studies, we demonstrate the

usefulness of our proposal by using the iCanCloud simulator

[3] to simulate, in parallel, cloud systems following the

methodology described in this work.

The rest of the paper is structured as follows. Section II

presents some related works. Section III describes the

motivation for increasing the performance for simulating

highly distributed systems. Section IV describes our proposal

to increase the scalability for simulating large scenarios.

Section V shows several performance experiments. Finally,

Section VI presents some conclusions and future work.

II. Related Work
At present we have found in literature some works to increase

both scalability and performance in simulations.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

11

The authors of [4] describe an ad-hoc simulation approach, as

well as an optimistic synchronization algorithm. An ad-hoc

distributed simulation is a collection of autonomous on-line

simulations brought together to model an operational system.

They offer the potential of increased accuracy, responsiveness,

and robustness compared to centralized approaches. This work

differs from conventional distributed simulations in that it has

been created bottom-up rather than top-down. Other works

based on online simulation are DDDAS [5] and the LEAD

project [6].

The work described in [7] presents a parallel SystemC

simulation kernel, which is implemented using parallel

programming techniques and leverages the parallel execution

capabilities of multi-core machines to speed up hardware

simulation. In this work [8], the authors propose a machine-

learning algorithm as an aid in making decisions about the

simulation execution. The algorithm is based on the well-

known K-Nearest Neighbour algorithm. After an extensive

training regime, it was shown to make a correct prediction

99% of the time on whether to use a parallel or sequential

simulator. The author of [9] describes a parallel processing

method for simulations of large-scale networks with a hybrid

traffic representation combining both a time-stepped fluid

model and a discrete-event packet-oriented model. This paper

also shows the benefit of the parallel hybrid model through a

series of simulation experiments of a large-scale network

consisting of over 170,000 hosts and 1.6 million traffic flows

on a small parallel cluster.

III. Motivation and main goals
The worst-case scenario for simulating cloud systems arises

when those simulations require a great level of detail and a

high level of scalability. In these cases a great computer power

is necessary and performing those kinds of simulations in a

single computer, using sequential simulation techniques, is not

feasible due to the lack of scalability. This limitation lies

basically in the computer power and memory provided by the

single machine in which simulation is executed. In this case,

large-scale models can take weeks, and even months of

simulation time, therefore, much more CPU power is required

to obtain results in a reasonable time-frame.

Nowadays, the best way to obtain this kind of computing

power is to use parallel computing systems, like clusters.

Those systems require the developing of parallel applications

that differs from traditional applications. Parallel applications

consist of several computing processes that work coordinated

by interchanging information (usually using message passing

methods). Then, a feasible solution is to use parallel

simulation techniques for simulating large-scale environments

that require both great amounts of processing power and

memory. This is the reason why simulators of distributed

systems must provide scalability. In this context, scalability

means whether the corresponding simulator is able to simulate

with enough performance large-scale systems, by increasing

the number of machines, which make up the corresponding

architecture to be simulated. Likewise, performance

determines the speed which a simulator executes a

corresponding simulation. In general, the larger the size of the

architecture to be simulated, the greater the time needed to

execute the simulation.

In this paper we propose an approach to perform parallel

simulations of large-scale models using the INET framework.

As we said in section 1, SIMCAN has been built upon the

OMNeT++ framework. The reason to choose OMNeT++ as

base framework is that it is popular in academia for its

extensibility since it is also open sourced and there are

plentiful online documentations. Moreover, several open

source simulation models have been published in the field of

network simulations such as IP, IPv6, MPLS, mobility and ad-

hoc simulations. Similarly, the INET framework is a well-

known framework for modeling and simulating the network

system. Moreover, a lot of research works use it, as ReaSE

[10,11], MiXiM [12], xMIPv6 [13] and overSIM [14], just to

name few. Therefore, our proposal is not only focused on a

specific simulation platform. Instead, any simulator or tool

that uses the INET framework for modeling and simulating the

network system can take advantage of this approach for

performing parallel simulations.

IV. Increasing scalability in large
simulations

OMNeT++ simulation programs have to assign manually

which modules will share the same computing node. This is

done by classifying the modules into logical partitions (LPs).

Each logical partition will be executed on a different

computing node. This classification has to be performed

before the execution of the simulation, because there is no way

to perform a dynamic classification during execution time.

In order to locate and reference the remote modules,

OMNeT++ uses "placeholders". An OMNeT++ placeholder is

just a proxy of a remote module placed on the partition instead

of the original one. Its mission is to forward all the messages

to the remote module itself. All the partitions of the computing

nodes have a placeholder for each one of their remote high-

level modules. A compound module can have their sub-

modules spread across some nodes. In this case, the compound

module is duplicated on all the corresponding nodes, and the

remote sub-modules are replaced by placeholders.

The INET framework is not able to perform parallel

simulations. These simulations cannot be executed on a single

computer because of the lack of memory or the computing

time required. OMNeT++ applies the message-passing

paradigm to implement parallel simulation (MPI [15]). The

main issue of performing parallel simulations lies in the

method of assigning both network and MAC addresses to the

nodes and switches of the modelled environment.

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

12

It is important to remark that, in parallel simulations, the

model is split in different sub-domains, called partitions, in

which a part of the model is executed in a single computer.

Therefore, using different machines, each executing a part of

the complete model, the simulation can share resources of

these nodes, like CPU and memory. However, the

performance of using parallel simulation must consider the

overhead caused by synchronizing these partitions.

Since each partition is in charge of managing a sub-set of

modules from the model, the local view of each partition is not

able to see the rest of the modules. Hence, a local partition

does not know how many other nodes or switches must be

configured in foreign partitions. Therefore, the main difficulty

lies in how to assign IP and MAC addresses without repeating

the same address in different partitions.

Currently, INET uses a module called Flat Network

Configurator (FNC). This module assigns IP and MAC

addresses automatically in execution time. This solution works

fine for sequential simulation because the FNC module has

access to all modules involved in the simulation. Thus, both IP

and MAC addresses can be assigned. However, this is not a

feasible solution for simulating cloud systems, where

thousands of physical machines have to be simulated. The

problem arises in parallel simulations, where each FNC is

executed in a different partition. Each FNC only has access to

those modules executed in the same partition, but not to the

rest of the modules simulated in other partition. Hence, a

mechanism of synchronization is required among all the

partitions to cooperate and assign the corresponding IP and

MAC addresses without collisions.

Figure 1 shows a network model made up of 8 computing

nodes and 2 switches. In this example, the simulation is

executed sequentially. The FNC has access to all modules that

compose the model and it can assign IP and MAC addresses to

the modules that need one.

Fig 1 Sequential simulation example

Figure 2 shows an example of a parallel simulation

corresponding to the model shown in Figure 1. In this example

the complete model is simulated using two LPs, where LP_0 is

in charge of simulating switch_0 and computing nodes 0, 1, 2

and 3. LP_1 is in charge of simulating switch_1 and

computing nodes 4, 5, 6 and 7.

Fig 2 Parallel simulation schema

From the LP_0 point of view there are only 5 modules:

Switch_0 and node 0, 1, 2 and 3. LP_0 knows that other 5

modules exist, but it does not know the type of the modules, or

if those modules need an IP address or a MAC address. These

kind of modules are placeholders, represented in Figure 2 by

grey squares. The FNC of each partition has no access to the

complete list of modules that need an IP or a MAC address.

Consequently, it cannot assign the addresses correctly, and it

cannot avoid repeated addresses.

We propose a method to assign appropriately both IPs and

MAC addresses to all the nodes and switches in a distributed

cloud model. The solution basically consists on using a new

module called Parallel Network Configurator (PNC). The

main purpose of this module is to build a complete list of those

modules that require an IP address or a MAC address. Each

LP must contain one PNC module (see Figure 2).

At initialization stage, each PNC builds a list that contains the

local modules that require an address. Then, this module

writes the list to a file, which is stored in a file system shared

by all partitions (step 1 and 2).

When all those files are created, each PNC has to read them

(step 3 and 4). Those files are merged with the purpose to

create a unique list for each kind of addresses. Therefore, each

PNC contains a complete list of those modules that need IP or

MAC addresses. In this way, each PNC can assign both IP and

MAC addresses correctly by avoiding collisions.

Finally, this process is used when a pair of modules, placed in

different LPs, requests to create a network connection. In this

case, the PNC module offers the facility to translate the name

of the destination module to its corresponding IP address. This

is done by seeking on the list those modules that use IP

address created by the PNC.

V. Performance experiments
In this section, we report the results of a set of simulation

experiments that have been perrformed. The main goal of

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

13

those experiments is to check both the scalability and

performance obtained using the proposal described in this

work.

A data-center of a cloud system has been modelled by using

both INET and iCanCloud. This model represents a data-

center that consists of 6 elements:

 Rack: It is used in order to group computing nodes in large-

scale systems. Due to managing large amounts of nodes

hampers the task of configuring the entire system, racks

contain a set of board nodes in order to ease deploying tasks.

 Board node: It is used with the same purpose as racks, for

grouping and managing nodes. This element contains a set of

computing nodes and one switch. The switch is used for

interconnecting the set of nodes inside a node board with the

rest of the architecture.

 Node: It is used to perform processing. Usually the nodes

contain a set of CPU cores for executing several processes in

parallel.

 Storage node: These elements are used for managing data.

 Switches: They are used for interconnecting the elements of

the distributed architecture.

 Communication network: It defines the speed of each

communication link in the architecture.

The modelled data-center contains 1024 nodes, grouped in 8

racks, where each rack contains 8 board-nodes. Each board

node contains 16 nodes. The number of storage nodes used is

16. Finally, the network used is an Ethernet 10 Gbps.

The behaviour of a map-reduce based application has been

modelled to achieve the simulation experiments. Basically, the

application model used in this work is a simplified version of

the map-reduce model proposed by Google [16]. This model

uses an initial data-set as the size of the problem. By size of

the problem we mean the amount of data that has to be

processed in order to accomplish the execution of the

application completely. The size of the data-set used in those

experiments is 128 GB.

In the experiments, the complete model is distributed among a

set of LPs. Each LP is executed on a single machine, and MPI

is used to communicate and synchronizing the set of LPs. In

order to split the model in a set of LPs, every element of the

model has to be allocated to a specific LP. We have

considered the next three modules as indivisible blocks to

perform this process: racks, switches and storage nodes. That

is, all the elements contained in the same block will be

executed in the same machine. For instance, all nodes included

in the same rack are located in the same LP, therefore all of

them will be executed in the same machine.

The simulation experiments have been executed using two

different methods for splitting the model. Each method uses a

different strategy for allocating each block of elements to a

LP.

The first method consists on allocating each block of elements

to a corresponding partition using a random distribution. On

the contrary, the second method uses domains to achieve the

allocation of each block. In this case, we define domain as a

group of elements which probability to share a communication

link to interchange data is high. For example, two racks that

are connected to the same switch have a high probability to

interchange data between them. The main goal of this method

is to reduce the communication overhead among

communicating elements executed in different LPs.

The simulation has been executed in a 16-node cluster. Each

node contains an Intel Xeon CPU 2.00Ghz and 4 GB of RAM

memory.

Figure 3 shows the execution time of the simulation

experiments using the two previously described allocation

methods. First, we can see that using parallel simulation, the

performance obtained is clearly improved. That is due to the

fact that several machines work in parallel for simulating the

complete model. This chart also shows that the improvement

of the performance obtained when the number of LPs

increases does not follow a linear tendency. This is caused

because of the communication overhead, necessary to

synchronize all LPs in the model. The greater the number of

LPs, the greater the overhead to synchronize the complete

model. However, this overhead can be alleviated by using the

technique of grouping elements into domains, instead of

allocating blocks to LPs randomly.

When 8 and 16 LPs are used, performance obtained is

practically identical. The cause of this lies in the architecture

of the model to simulate, which contains 8 racks. Therefore,

the level of parallelism cannot be increased by distributing the

racks in 16 LPs. Furthermore, the level of parallelism obtained

for simulating the storage nodes in parallel is lost by the

overhead caused to synchronize the LPs that contain them.

Fig 3 Time required to simulate the cloud model

Figure 4 shows the amount of memory required for executing

each experiment. Those results show that the memory

requirements for both allocation methods are practically the

same. Using a grouped allocation consumes slightly less

0

10

20

30

40

50

60

70

1 2 4 8 16

Number of Logical Partitions (LPs)

Random allocation Grouped allocation

Ex
e
cu
ti
o
n
ti
m
e
(h
o
u
rs
)

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

14

memory than random allocation, but it is almost insignificant.

It is worth to note that parallel simulations require almost the

same memory that sequential simulations. However, using

parallel simulation provides more scalability because the

model is not limited to the memory provided by a single

machine. Instead, the sum of the memories where the

simulation is executed can be used.

Fig 4 Amount of memory required to simulate the cloud model

VI. Conclusions and Future work
In this work we have presented the parallelization of the INET

framework. This method consists on generating both IP and

MAC addresses appropriately among the different partitions

that execute the simulation. In order to demonstrate the

usefulness of our proposal, a cloud computing data-center has

been modelled and simulated.

The solution developed relies on a Parallel Network

Configurator that alleviates the problem of configuring the

network features in a large environment. The results of the

simulation show that our proposal increases both the

scalability and performance for simulating cloud systems.

Future works will include increasing the size of the model and

the number of nodes for performing parallel simulations.

Acknowledgment

This research was partially supported by the Spanish MEC

projects TESIS (TIN2009-14312- C02-01) and ESTuDIo

(TIN2012-36812-C02-01) and the Spanish Ministry of Science

and Innovation under the grant TIN2010-16497. We would

also like to thank Jesús Carretero for his assistance this work.

References

[1] (2013) Andras Varga. INET Framework. “http://inet.omnetpp.org”.
[2] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation

environment,” in Simutools ’08: Proceedings of the 1st international
conference on Simulation tools and techniques for communications,

networks and systems & workshops. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
2008, pp. 1–10.

[3] (2013) The iCanCloud simulator. http://www.arcos.inf.uc3m.es/
/~icancloud/Home.html

[4] R. Fujimoto, M. Hunter, J. Sirichoke, M. Palekar, H. Kim, and W. Suh,
“Adhoc distributed simulations,” in PADS ’07: Proceedings of the 21st
International Workshop on Principles of Advanced and Distributed
Simulation. Washington, DC, USA: IEEE Computer Society, 2007, pp.
15–24.

[5] D. Brogan, P. Reynolds, R. Bartholet, J. Carnahan, and Y. Loitire,
“Semi-automated simulation transformation for DDDAS,” in In
Computational Science - ICCS 2005: 5th International Conference.
Springer-Verlag, 2005, pp. 721–728.

[6] Realization of Dynamically Adaptive Weather Analysis and Forecasting
in LEAD: Four Years Down the Road, vol. 4487/2007. Beijing, China:
Springer, 05/2007 2007.

[7] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines,” in
PADS ’09: Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on
Principles of Advanced and Distributed Simulation. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 80–87.

[8] Q. Xu and C. Tropper, “On determining how many computers to use in
parallel VLSI simulation,” in PADS’09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and
Distributed Simulation. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 122–128.

[9] J. Liu, “Parallel simulation of hybrid network traffic models,” in
PADS’07: Proceedings of the 21st International Workshop on Principles
of Advanced and Distributed Simulation. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 141–151.

[10] T. Gamer and M. Scharf, “Realistic simulation environments for IP-
based networks,” in Simutools ’08: Proceedings of the 1st international
conference on Simulation tools and techniques for communications,
networks and systems & workshops. ICST, Brussels, Belgium, Belgium:
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 83:1–83:7.

[11] T. Gamer and C. P. Mayer, “Large-scale evaluation of distributed attack
detection,” in Simutools ’09: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2009, pp. 68:1–68:8.

[12] K. Wessel, M. Swigulski, A. Kpke, and D. Willkomm, “MiXiM The
Physical Layer An Architecture Overview,” in 2nd International ICST
Workshop on OMNeT++. ICST, May 2009.

[13] F. Z. Yousaf, C. Bauer, and C. Wietfeld, “An accurate and extensible
mobile IPv6 (xMIPV6) simulation model for OMNeT++,” in Simutools
’08: Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops.
ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
2008, pp. 88:1–88:8.

[14] I.Baumgart, B.Heep and S. Krause, “OverSim: A Scalable and Flexible
Overlay Framework for Simulation and Real Network Applications,” in
IEEE P2P’09: Proceedings of the 9th International Conference on Peer-
to-Peer Computing, H. Schulzrinne, K. Aberer, and A. Datta, Eds. IEEE,
2009, pp. 87–88.

[15] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. N. amd W.
Saphir, and M. Snir, MPI: The Complete Reference. MTI-Press, 1998,
vol. 2 – The MPI-2 Extensions.

[16] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, January 2008.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16

Number of Logical Partitions (LPs)

Random allocation Grouped allocation

A
m
o
u
n
t
o
f
m
e
m
o
ry

(M
B
)

International Journal of Advances in Computer Science and Its Applications– IJCSIA
Volume 4: Issue 2 [ISSN: 2250-3765]

Publication Date : 25 June 2014

http://www.arcos.inf.uc3m.es/

