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Abstract—Smart phones and tablet computers are typically 

equipped with a camera and a powerful processor, and together 

with the right computer vision software they can support 

engineers and other professionals in a broad range of tasks. 

Creating 3D models of real world objects is one job that can be 

very time consuming for humans if carried out manually, 

whereas with an adequate image processor the task can be 

completed very efficiently. In this paper we focus on the 

recognition of lattice-like objects made up of elements from a 

certain set of basic components. We propose a procedure 

incorporating a 2D detection of object parts, a 3D reconstruction, 

and a 3D model composition. The efficiency of the procedure is 

demonstrated by means of a prototype in the form of an Android 

app, accomplishing a 3D recognition and rendering of molecular 

models. 
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I. Introduction 
Many applications of computer vision technology involve 

a recognition and reconstruction of 3D objects from 2D 
images. Fast and simple creation of 3D object models for 
further elaboration, pose estimation and target tracking, as 
well as object component recognition are tasks that typically 
require a 3D object reconstruction. The range of applications 
in these areas is broad and new possibilities have opened up 
recently with the availability of small hand-held devices – 
such as smart phones and tablets – combining cameras with 
great processing power. 

A typical monocular camera performs a projection from 
the 3D space onto a 2D plane, thereby loosing depth 
information. Dealing with rigid objects the missing dimension 
can be recovered, in principal, provided that sufficiently many 
images of a target object are available. However, the problem 
of estimating the coordinates of object points in the 3D space 
is challenging for a number of reasons. First of all, the camera 
positions and orientations associated with the delivered 2D 
images are usually unknown and must be estimated along with 
the coordinates of selected 3D object points. Given there are m 
images – each of which is associated with a camera pose with 
six degrees of freedom – and n object points, the total number 
of parameters amounts to 6m+3n. The joint estimation of these 
parameters on the basis of a sufficient number of 
corresponding 2D point observations is referred to as bundle 
adjustment. 
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Adopting a mean-squared error criterion the bundle 
adjustment can be formulated as a minimization problem and 
tackled by the Levenberg-Marquardt algorithm [1], but the 
non-convex cost function may lead to results that do not match 
the real scene. For camera pose estimation on the basis of a 
small number of images there are also direct analytical 
methods from epipolar geometry [2]. Here a difficulty is to 
deal with non-ideal cameras (although the cameras in many 
smart phones and tablets conform quite well to the pinhole 
camera model) and point deviations in the 2D image planes. 
Such deviations can easily occur during the identification of 
point (i.e., feature) correspondences over multiple images. 

These difficulties can be dealt with for rather 
straightforward 3D objects such as buildings. Commercial and 
free software solutions are available which produce rather 
accurate 3D models of suitable objects, mostly in off-line 
processing and in some cases requiring user assistance. As for 
the reconstruction of more complex 3D objects, such as 
objects comprised of many different components, only with a 
sufficient number of images there is a chance to capture all 
object parts. This motivates the use of image sequences rather 
than small sets of images from distinct positions. Various 
methods for tracking 3D features over a series of frames by a 
monocular camera have been proposed [3]. This topic has 
attracted interest particularly in robotics – for the creation of 
maps of unknown environments by autonomous vehicles – 
under the acronym SLAM (Simultaneous Localization and 
Mapping) [4], [5]. 

In this paper we focus on lattice-like objects, that is, 
complex objects composed of distinct object parts that are 
interconnected by bars or similar connecting elements. An 
example would be electricity pylons in the form of steel lattice 
towers. Our goal is to recognize the object parts, determine 
their 3D locations, and also the connecting elements such that 
a 3D model of the complete object can be composed. A 
motivation behind a machine-aided recognition of such objects 
could be the detection of faulty or missing elements for safety 
purposes. 

Images of lattice-like objects consist of lines for the most 
part, and 3D reconstruction based on line segments has been 
considered in some recent papers [6], [7]. Line segment 
detection also plays a role in the procedure we propose, 
however, for the 3D reconstruction we rely exclusively on 
point features as they have turned out more suitable in the 
context of bundle adjustment. We represent the camera poses 
and the feature locations by probability distributions, the 
former by means of a particle filter (as in [8], for instance) and 
the latter in the form of Gaussian distributions. With every 
additional frame the 3D location of an observed feature 
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becomes more confined, which is reflected by covariance 
matrices with declining determinants. 

Rather than dealing with large-scale compositions we use 
small-scale molecular models as test objects (see Fig. 1 for an 
example). These are handy while possessing structural 
similarities with the above mentioned objects. We have 
implemented the algorithm proposed in this paper on a tablet 
computer running Android. Moving the tablet around with the 
camera pointing towards a molecule, a 3D model of the object 
is composed within just a few seconds and displayed on the 
screen. 

 

 

Figure 1. Example of a molecular model. 

 

II. 3D Object Reconstruction 
The principal steps of the processing chain are sketched in 

Fig. 2. The 3D reconstruction relies on point features detected 
in the 2D images. Line segments are also detected for finding 
the connecting elements, however, they are incorporated not 
before the 3D locations of the point features have been 
estimated. In the final processing step the 3D model is build. 
In the following the steps shown in the figure are discussed in 
more detail. 

A. 2D Point Feature Detection and 
Tracking 
A considerable number of point feature detectors and 

descriptors have been proposed and benchmarked over the 
past years. We use feature descriptors to track identified 
object parts over consecutive frames, while for the actual 
feature detection we simply employ a circle detector based on 
the Hough transform because our elementary object 
components are atoms having the form of spheres. More 
specifically, a circle detection first delivers the 2D locations of 
possible atoms in an image, followed by a labelling of these 
locations by means of descriptors. As is common practice, the 
descriptors facilitate the matching of detected features over 
consecutive frames. We have found in a study that in terms of 
complexity and reliability we are best served by BRIEF [9], 

one of the descriptors implemented in the popular OpenCV 
library. 

 

 

Figure 2. Proposed 3D recognition procedure. 

 

B. 3D Point Location and Camera Pose 
Estimation 
The point features that have been tracked over multiple 

frames serve as the basis for the 3D reconstruction, which 
goes along with an estimation of the camera poses associated 
with the frames. In the following the estimation of the 3D 
coordinates of the features is described first, followed by a 
method for camera pose tracking and a scheme to incorporate 
the two tasks. 

Let xn represent the position of the nth observed feature in 
the world coordinate system. The coordinate transformation 
from the world coordinate system to the camera coordinate 
system associated with the mth camera can be expressed as 

 

where Rm and tm denote a rotation matrix and a translation 
vector, respectively, defining the mth camera pose. The 
camera coordinate system, with the origin coinciding with the 
center of the perspective projection, may be chosen such that 
the x- and y-axes are parallel to the corresponding axes in the 
2D image plane while the perpendicular z-axis represents the 
optical axis. Assuming a pinhole camera model, the 2D 
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coordinates in the image plane can then be derived from pm,n 
very simply through a division of the x and y coordinates in 
pm,n by the z coordinate. 

We actually need the inverse mapping, from an observed 
2D image point to a 3D point in world coordinates. Making 
some assumption about the distance between the camera 
center and the observed feature, possibly in the form of a 

predefined constant, an estimate  of the 3D feature 
location in camera coordinates is readily obtained. The 
estimated coordinates can be transformed to coordinates in the 
world coordinate system according to 

 

the inverse mapping of (1). Clearly, because of the unknown 

distance from the camera the accuracy of the vector  is 

poor in the direction  in particular, the direction of 
the beam from the optical center through the observed point in 
the image plane (represented as dashed lines in Fig. 3). But 
deviations also occur in the other directions as a result of 
nonideal camera characteristics and feature tracking. We 
choose to describe the actual location xn of the point 
statistically, by means of a 3-variate normal distribution 

 

with  defining the mean and Σm,n the covariance matrix. 
The latter we define as 

 

with c0 and c1 two constants and I3 the 3x3-identity matrix. 
Areas containing a feature with high probability are visualized 
in Fig. 3 as ellipsoids. Their semi-major axes coincide with the 
beams from the camera center through the observed points in 
the image planes. 

Let us now suppose the feature at xn is also observed in the 
kth frame. We may regard (3) as the prior distribution of the 
location xn. As the Gaussian distribution is self-conjugate with 

respect to a Gaussian likelihood function , the 

posterior distribution  is also Gaussian. 
Specifically, the mean and covariance matrix of the posterior 
distribution are given as 

 

and 

 

respectively. The observations in a third frame and beyond can 
be incorporated in a similar fashion. The more observations of 
a feature are available the smaller the determinant of the 
covariance matrix and thus the more confined the area in 
which the feature resides with high probability. 

 

 

Figure 3. Illustration of the probabilistic point feature 

localization using Gaussian distributions. For features found in 

a single image, the ratio of the largest and smallest covariance 

matrix eigenvalues (corresponding to the ratio of the major 

and minor radiuses of the ellipsoid) is large. The more images 

with a certain feature from different angles are available, the 

smaller the eigenvalue ratio as well as the area in which the 

feature resides with high probability. 

 
We now turn to the estimation of the camera poses 

associated with the sequence of frames. The first camera pose 
can be defined arbitrarily. The choice of the six parameters 
defining the pose – three coordinates and three Euler angles – 
establishes the world coordinate system. Subsequently it is the 
deviation of a camera pose with respect to the preceding 
cameras that needs to be estimated, with the help of the 2D 
coordinates of a number of features that have been found in 
both the actual as well as the preceding frames. On the basis of 
two images the problem of determining the relative pose along 
with the 3D locations of a number of object points may 
actually have multiple solutions, so at the beginning each of 
the possible solutions needs to be reevaluated with at least a 
third image. A larger number of frames is actually needed for 
accurate results in the case of inappropriate object points, 
deviations in the point observations or insufficient change of 
pose from frame to frame. 

The equation system holding the six parameters that define 
a pose is nonlinear and difficult to solve in an efficient 
fashion. However, once the Euler angles are known, the 3D 
camera position can be analytically derived in a 
straightforward way. Regarding the pose estimation as an 
optimization problem, we may thus resort to a numerical 
method performing a search in the three dimensional space of 
the Euler angles. Rather than an exhaustive search we choose 
to carry out a Monte Carlo sampling, embedded in a particle 
filter. Employing a particle filter seems particulary suitable in 
view of the above mentioned multitude of possible solutions 
over several frames as well as the nonlinear dependence on the 
Euler angles. Each particle represents a specific camera 
trajectory, covering both the positions and the orientations of 
the cameras behind the thus far obtained frames. Once an 
additional frame becomes available, for each particle an 
eligible camera pose is found through a Monte Carlo 
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sampling. This step involves an evaluation of a larger number 
of samples on the basis of the reconstructed 3D object points, 
and in the same time a rejection of outliers in a RANSAC 
(Random Sample Consensus) fashion. Finally, an appropriate 
objective function facilitates the choice of the most suitable 
particle. 

C. 2D Edge Detection 
To find connecting elements between the point features 

(i.e., the atoms) we employ an image pre-processing in the 
form of a Canny edge detection followed by a Hough line 
transform. Typically a bar linking two atoms is enclosed by 
two parallel lines, but of course sometimes lines are missing 
due to insufficient contrast, or they appear as a result of 
shadows for instance. Moreover, a third atom in front of a bar 
may be seen as two bars linked to the third atom. 

A rule is needed to identify probable connecting elements 
on the basis of the detected straight lines. The rule we have 
defined builds on the positions of the line endpoints relative to 
the atom centers. Additionally, a tentatively detected bar 
linking two atoms is rejected if a third atom happens to lie on 
the extended line between the two atoms. This way, false 
detections can be limited at the cost of a rather moderate 
detection rate, as can be seen in Fig. 4. 

 

 

Figure 4. Detected connecting elements (marked by red lines) 

on the basis of detected point features (yellow circles) and 

straight lines (green lines). 

 

D. 3D Model Composition and 
Organization 
Missed object elements, false detections due to shadows or 

reflections, as well as incorrect feature tracking and other 
flaws result in inaccurate 3D object reconstruction. The 
defects can be mended with the help of a priori information 
about the object. A priori information about adjacent object 
elements, the lengths of certain connecting elements, or the 
angles between connectors may be available in deterministic 

or probabilistic form. Using this knowledge possible methods 
for improving the results from the preceding processing range 
from simple element elimination to sophisticated optimization 
procedures based on graphical models. 

III. Prototype 
The procedure described in Sect. II has been implemented 

on a tablet computer running Android on a quad-core 
processor and equipped with a rear camera. The app uses 
functions from the OpenCV library for the Hough circle and 
line transforms, the computation of BRIEF descriptors of the 
detected point features, as well as for the Canny edge 
detection. These operations are rather time consuming given 
the camera resolution of 1280 times 960 pixels, so that the 
frame rate is limited to only about one to three frames per 
second, depending on the scene complexity. 

The 3D reconstruction process and the model optimization 
process run in parallel to the image pre-processing and feature 
detection process. The 3D reconstruction is also 
computationally intensive, in particular the pose estimation 
with the particle filter behind. For each particle, the 
computation of a new pose involves a Monte-Carlo sampling 
of candidate orientations, each of which needs to be evaluated 
on the basis of the observed features. These evaluations 
involve large numbers of covariance and rotation matrix 
inversions, an efficient implementation of which significantly 
reduces the computation times. Rotation matrices can 
efficiently be defined by quaternions, one of the concepts we 
make use of for ending up with a solution that offers on-line 
3D model building on customary hardware. 

In the prototype the numbers of particles and samples per 
pose update are adjusted continuously such as to keep up with 
the delivery of frames. The number of necessary frames for 
the reconstruction of a certain molecule model depends on the 
complexity of the latter, ranging from a couple of frames to 
several hundred frames in the case of complex models 
composed of 50 atoms or more. Molecules of moderate 
complexities are perfectly reconstructed under normal 
circumstances (see Fig. 5 for an example), whereas 3D 
reconstructions of larger molecules turn out to be incomplete 
in some cases. It is difficult to precisely assess the detection 
rates, because they depend on so many factors including 
camera motion, background, and light. The app further offers 
the option to display the camera poses along with the 
reconstructed object (see Fig. 6). 

IV. CONCLUSIONS 
Creating models of 3D scenes or objects from the images 

of a monocular camera is a challenging task. For the necessary 
bundle adjustment a number of methods have been proposed. 
The prospects depend on the characteristics of the 3D scene, 
but often the results are not satisfactory because of the non-
convexity of the underlying optimization problem or 
inaccurate observations. 

We have focussed on lattice-like objects, which have not 
yet received much attention in the context of 3D 
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reconstruction. Having the above mentioned difficulties in 
mind, we have proposed a new method towards 3D 
reconstruction, building on well-known concepts from 
computer vision, such as feature tracking, and Bayesian 
statistics, such as particle filters. To demonstrate the efficiency 
of the proposed method, an app has been implemented running 
on a smart phone or tablet computer, able to compute and 
render 3D reconstructions of molecular models in an online 
fashion. 

We believe that the described method may also facilitate a 
3D modeling of more complex objects of the same type, such 
as electricity pylons for instance. Numerous applications are 
conceivable in this context, ranging from fault detection to 3D 
map generation. 

 

 

Figure 5. Example of a molecular model reconstruction: the 

bigger view shows what the camera sees, and the smaller view 

shows the rendered model using OpenGL. 

 

 

 

Figure 6. Reconstructed molecule including camera positions 

and orientations. 

References 
[1] M. I. A. Lourakis and A. A. Argyros, “SBA: A software package for 

generic sparse bundle adjustment,” ACM Transactions on Mathematical 
Software, vol. 36, pp. 2:1–2:30, Mar. 2009. 

[2] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer 
Vision. Cambridge, UK: Cambridge University Press, 2nd ed., 2004. 

[3] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid 
objects: A survey,” Foundations and Trends in Computer Graphics and 
Vision, vol. 1, no. 1, pp. 1–89, 2005. 

[4] R. Munguia, B. Castillo-Toledo, and A. Grau, “A robust approach for a 
filter-based monocular simultaneous localization and mapping (SLAM) 
system,” Sensors, vol. 13, pp. 8501–8522, July 2013. 

[5] S. Riisgaard and M. R. Blas, “SLAM for dummies: A tutorial approach 
to simultaneous localization and mapping,” tech. rep., 2005. 

[6] M. Hofer, A. Wendel, and H. Bischof, “Incremental line-based 3D 
reconstruction using geometric constraints,” in Proc. British Machine 
Vision Conference (BMVC 2013), Bristol, UK, Sept. 2013. 

[7] A. Jain, C. Kurz, T. Thormählen, and H.-P. Seidel, “Exploiting global 
connectivity constraints for reconstruction of 3D line segment from 
images,” in IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR 2010), San Francisco, CA, June 2010. 

[8] B. Kalyan, K. W. Lee, and W. S. Wijesoma, “FISST-SLAM: Finite set 
statistical approach to simultaneous localization and mapping,” the 
International Journal of Robotics Research, vol. 29, pp. 1251–1262, Sept. 
2010. 

[9] M. Calonder, V. Lepetit, M. Özuysal, T. Trzcinski, C. Strecha, and P. 
Fua, “BRIEF: Computing a local binary descriptor very fast,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1281–1298, 2012. 

 

 

About Author (s): 

 

 

 

 

 

 

 

Thomas Hunziker received the Ph.D. 

degree from the Swiss Federal Institute of 

Technology (ETH) Zurich in 2002. After a 

couple of years in both Japan (at ATR in 

Kyoto) and Germany (at Univ. of Kassel) 

he joined the Lucerne University of 

Applied Sciences and Arts, Switzerland. 

Besides of lecturing he is engaged  in 

research projects in the areas of signal 

processing, computer vision, machine 

learning and digital communications. 

 

International Journal of Advances in Computer Science and Its Applications– IJCSIA 
Volume 4: Issue 2          [ISSN: 2250-3765] 

Publication Date : 25 June 2014 
 


