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Practical Aspects of Compute and Forward 
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Abstract—In this paper, the recently proposed physical layer 

network coding (PNC) scheme, compute-and-forward, is 

revisited. Detailed analysis is performed to reveal the practical 

problems or challenges of this relaying scheme. A very effective 

and efficient method is proposed to find the optimal integer 

coefficients to maximize the achievable rate. To obtain enough 

independent integer linear equations at the destination nodes to 

recover the messages, a multi-antenna receiving scheme is 

proposed. It is also revealed that for a general multi-way relay 

over Gaussian fading channel, joint maximum likelihood (ML) 

detection has a much better performance than compute-and-

forward relaying scheme. Simulation results are also provided 

Keywords—Compute-and-forward, joint detection, lattice codes, 

lattice decoding, MIMO, physical layer network coding, relay 

I.  Introduction 
In the past few years, physical layer network coding (PNC) 

has become a welcoming topic and attracted a large amount of 
research activity [1]. The aim of the research is to find or 
develop methods with which the network can achieve higher 
data rate or capacity. The idea of PNC for wireless network is 
originated from network coding for wired network, which can 
trace back to as early as 2000 [2]. The principle of network 
coding is that intermediate nodes forward functions of 
received packets rather than individual packets to increase the 
throughput. In 2006, three research groups [3]-[5] 
independently proposed the idea of PNC for wireless network. 
It is shown that, with a relay decoding and forwarding the 
modulo-two sum (XOR) of the transmitted packets, the 
throughput of a two-way relay channel can be significantly 
improved. 

In 2009, Nazer and Gastpar [6] extended PNC from two-
way relay case to general network framework by introducing a 
new PNC and network relaying strategy, compute-and-
forward, using lattice codes. The principle of compute-and-
forward, using lattice codes, is to exploit rather than combat 
the multiple access interference in a wireless relay network, 
thus resulted in improved network throughput. In this relaying 
scheme, the relays, instead of recovering individual messages, 
attempt to reliably recover and pass an integer linear 
combination of transmitted messages, referred to as an 
equation, to the destination. By receiving sufficient number of 
equations, the destination node is able to recover the 
individual messages by simply solving these linear equations.  

Before the emergence of compute-and-forward, there are 
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Before the emergence of compute-and-forward, there are 
three well known PNC schemes or relaying strategies, namely, 
amplify-and-forward, compress-and-forward, and decode-and-
forward. In the amplify-and-forward scheme, the relay simply 
acts as a repeater. The amplify-and-forward scheme provides a 
simple “analogue-to-analogue” interface in which the relay 
scales the incoming signal and transmits it to the receiver [7]. 
Noise accumulates with each retransmission as no decoding is 
performed at the relay nodes. In the compress-and-forward 
scheme, instead of using “analogue-to-analogue” interface, an 
“analogue-to-digital” interface is used. The relay compresses 
the received signal and sends the compression index to the 
receiver [8]. Similar to amplify-and-forward, as no decoding is 
performed at the relay nodes, noise accumulates as messages 
traverse the network. In the decode-and-forward, the relay 
decodes at least part of the transmitted messages. The 
recovered messages are then un-coded or re-encoded and 
transmitted to the next relay or the destination [8]. Obviously 
the relay is ultimately interference-limited as the number of 
transmit sources increases. 

The rest of this paper is organized as follows: Section II 
presents the principle and system structure of compute-and-
forward, and the commonly used decoding method. In section 
III, the practical problems and challenges of compute-and-
forward are revealed and unique solutions are proposed for 
each of the problems. Simulation verifications are provided in 
section IV, and conclusions are drawn in section V. 

II. Compute-and-Forward 
Relaying Scheme 

A. Principle and System Structure of 
Compute-and-Forward 
So far in compute-and-forward relaying scheme, linear 

codes are employed by the requirement that an integer linear 
combination of codewords must still be a codeword. Since 
lattice codes offer many desired properties, they have naturally 
been used in compute-and-forward exclusively and become 
part of the architecture of this relaying scheme.  

For a general relay network, assuming many source nodes 
and relay nodes. The general computation model of compute-
and-forward can be abstracted below in Figure 1.  
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Figure 1.  General model of compute-and-forward with L source nodes and M 

relay nodes. 

In the encoding process, messages 
k

qL Fw,,w,w 21   from 

the L source nodes are encoded to L n-dimensional complex-

valued codewords 
n

L Cx,,x,x 21  , which are then 

transmitted over channel with complex-valued coefficients 

mlh . The received signal at each relay node is a linear 

combination of the transmitted signals from all the source 
nodes plus additive noise which can be expressed as:  

zxy
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The channel coefficients between the source nodes and the 
relay nodes are assumed perfectly known at the relay nodes. 
The n-dimensional codewords are subject to average power 

constraint of PE
n

l 
2

x
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, and ),0(~z 2
nICN   is a 

circularly-symmetric jointly-Gaussian complex random vector 

where nI  is the nn  identity matrix.  

Now the target of the decoder at each relay is to decode an 
integer linear combination of the codeword vectors transmitted 
from all the source nodes: 
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where jZaml   are the integer coefficients to be 

determined in the decoding process to maximize the 
achievable data rate, which is the key design parameter of 
compute-and-forward scheme and will be discussed in the next 
subsection. Note that in the original description of compute-
and-forward [6], modulo operation by the coarse lattice   is 
used in (3). This is optional when nested lattice codes are 
employed and the modulo lattice decoding method [9] is used. 
In general, (2) can simply be used in the decoding.  

Also note that because of the one to one mapping between 
a message vector and a codeword vector, decoding an integer 
linear combination of codeword vectors is equivalent to 
decoding an integer linear combination of message vectors.   

After decoding at each relay node, the decoded linear 
equations are forwarded to the destination node, where, after 
receiving enough number of linear independent equations, the 
transmitted messages can be recovered easily. 

B. Decoding of Integer Linear Equation 
As the design principle of compute-and-forward is based 

on the algebraic property that an integer linear combination of 
codewords is still a codeword, the goal of the decoder at a 
relay node is to reliably recover an integer linear combination 
of the transmitted codewords. However, in reality, the channel 
coefficients normally have real or real complex values instead 
of integer or integer complex values, the linear combination of 
transmitted codewords received at the relay receiver is no 
longer an integer linear combination. Therefore the task of the 
decoder is to find an integer linear combination which is as co-
linear as possible to the received signal without considering 
the noise. The commonly used decoding method of compute-
and-forward can be summarized below in Figure 2.  

The decoding process includes scaling the received signal 
with the optimal scaling factor, and then quantizing the scaled 
signal to the nearest lattice point. The purpose of the scaling 

by a factor   is to make the scaled signal my~  as close to an 

integer linear combination of the codewords as possible. The 
scaled signal can be expressed as: 
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From (4), it can be seen that the scaled signal consists of 
three components. The first component is a desired integer 
linear combination of the codewords; the second component is  
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Figure 2.  Decoding structure of compute-and-forward. 
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the noise caused by channel mismatch; and the last component 
is related to the additive white Gaussian noise. Thus a main 
task of the compute-and-forward decoder is to select the 
scaling factor   and the coefficient vector 

],,,[ 21 mLmmm aaaa   to minimize the average power of 

the effective noise effn  expressed by (5). 

1) Achievable rate 
It has been proved in [6] that for complex-valued wireless 

AWGN network with channel coefficient vector 
L

mLmmm Chhh  ],,[h 21   and equation coefficient vector 

 L
mLmmm jaaa  ],,,[a 21  , the following 

computation rate is achievable at the relay receiver: 

)
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log(max)a,h(
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where NPSNR / , N  is the power of the AWGN noise z . 

It has also been proved that this computation rate can be 
uniquely maximized by further choosing to be the MMSE 

coefficient which is given by:  
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By using the above MMSE scaling factor MMSE , the resulted 

achievable computation rate can be written as: 
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2) Parameter selection 
For the scaling factor , from (4), it can be seen that using 

a larger value may allow better approximations of an integer 
linear combination of codewords and reduces the noise due to 
the mismatch in the approximation. However, as it can be 
observed in the effective noise term, a larger scaling factor 
also results in amplification of the additive noise. This trade-
off between integer-approximation and noise amplification is 
known as the Diophantine trade-off. In fact, the design 
criterion of the compute-and-forward receiver is to select the 

scaling factor   and the equation coefficient vector ma  so as 

to maximize the computation rate. This is also equivalent to 
minimizing the power of the effective noise [10]: 
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Given the relationship between the scaling factor and the 
equation coefficient vector by (7), (9) can be written as: 

H
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Because the matrix M is Hermitian and positive definite, it 

has a Cholesky decomposition HLLM  , where L  is a lower 
triangular matrix. Thus (11) becomes: 

2

m
H
mmm LaMaa)a( effN                   (13) 

And the optimal equation coefficient vector is given by 

Laminarga m
0am

opt                            (14) 

Thus finding the optimal parameters  and ma  is in fact a 

shortest vector problem (SVP). 

III. Practical Problems or 
Challenges, and Solutions of 

Compute-and-Forward 
Currently the compute-and-forward PNC scheme has the 

following practical problems or challenges that need to be 
solved. 

 Developing efficient parameter selection method 

 Obtaining enough independent integer linear 
equations at the destination node. 

 Achieving the maximum rate 

Below in this section, we describe each problem or 
challenge and propose our methods of solutions. 

A. Developing Efficient Parameter 

Selection Method 

1) Drawbacks of the existing methods 
As described in section II.B.2) above, the integer 

coefficients optimization is to solve a SVP, which is known to 
be NP hard. Although a few suboptimal algorithms exist, such 
as the LLL algorithm [11], which make the searching process 
less complex, they have two drawbacks. Firstly, due to the 
large search space of the problem, the computation complexity 
is still very high. Secondly, because these algorithms are 
suboptimal, the solution is likely not to be the best, leading to 
a lower data rate. In the following section, we propose an 
efficient method to solve this problem. 

2) New efficient method for parameter 
selection 

The motivation of the new method is that the purpose of 
the parameter selection is equivalent to finding an optimal 
scaling factor that makes the decoded integer linear equation 
as co-linear as possible to the received signal without 
considering the additive noise. Therefore in this newly 
proposed method, instead of searching the optimal integer 
coefficients directly, we search the optimal scaling factor first, 
then convert it to the integer coefficients. In this way, the 
searching process is much faster since for a relay of L users 
over a complex-valued channel, the process of direct searching 
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has to search L2  integer coefficients, while in our new 
method, only one parameter, the scaling factor, has to be 
searched. This new parameterr selection algorithm is described 
below. 

 

Algorithm Parameter Selection 

Define function )(xf closest integer complex number to 

Cx . In case of a tie, choose the number with the largest 

absolute value. For vector n
n Cxxx  ],,[x 21  , define 

  )](),(),([x 21 nxfxfxff  . 

Note: the searching range of the scaling factor   will be 

discussed below after the algorithm description. 
Step1: Initialization  

    STARTSTART   , ENDEND   , 1STEP ,  
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Step2: Searching Loop 
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In the above parameter selection algorithm, for the 
searching range of the scaling factor  , only integer value 

needs to be considered. The searching start value is selected to 

be 1START . To determine the searching end value, the 

following two methods can be used. 

 Method-1: This is an intuitive method. From (5), we know 
that when the scaling factor is larger than 1, it amplifies the 
noise. Thus to achieve the maximum rate, the scaling factor 
cannot be too big, especially when SNR is low. Therefore, 

normally a searching end value of 1000END  is more than 

enough.  

Method-2: In “unpublished” [12], for the direct integer 
coefficient searching method, the authors have proved that the 
searching range is necessary only in the range defined by: 

)h1a
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Based on (16), the searching end value can be selected as: 
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B. Obtaining Enough Independent 
Integer Linear Equations at the 
Destination Node 
1) Problem 
As discussed in section II.A, for compute-and-forward 

PNC scheme to work, the destination node has to receive 
enough independent integer linear equations from the relay 
nodes. In real applications, due to the nature of the wireless 
channel, it is highly likely that some equations decoded at the 
relay nodes will be linearly dependent. In this case, the 
transmitted messages cannot be recovered at the destination 
node. Below we propose a multi-antenna receiving scheme to 
solve this problem.  

2) Multi-antenna receiving scheme at 
relay nodes 

In this scheme, instead of using single receiving antenna, 
multi-antenna receiver is employed at each relay node. In this 
way, each relay node can decode several equations instead of 
only one. Since the multiple antennas belong to the same relay 
node, the relay receiver can also determine whether the 
equations are linear independent, thus can avoid blindly 
sending linear dependent equations to the destination node. In 
real applications, the number of source nodes that 
communicate with a relay node at the same time will not be 
large, e.g., two will be typical and eight will be highly 
unlikely. Therefore four receive antennas will normally be 
large enough. One additional advantage of this scheme is that 
a channel condition aware intelligent PNC scheme can be 
adopted, where when channel condition suits, compute-and-
forward decoding will be used, otherwise normal MIMO 
decoding will be used to decode the messages directly. We 
believe the intelligent PNC scheme can further boost the data 
rate in real applications, which will not be discussed in this 
paper. 

C. Achieving the Maximum Rate 
In this section, we list a number of scenarios and describe 

how to achieve the best rate. 

1) Two-way relay over AWGN channel 
In [13], the achievable rates of various relaying schemes 

are derived, among which the rate of compute-and-forward is 
the best and can be written as:  

)5.0log( SNRRCF                            (17) 

2) Two-way relay over Gaussian fading 
channel 

The achievable rate of compute-and-forward is given in (8) 
if no extra processing is performed at the transmitters or 
receivers. However, for two-way relay, it has been 
demonstrated in [13] that precoding can be applied so that the 
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maximum rate of compute-and-forward expressed in (17) can 
be achieved.  

3) General multi-way relay with AWGN 
channel 

In this case, all the channel coefficients are unities thus the 
elements of the equation coefficient vectors are also unities. 
Therefore compute-and-forward relaying scheme cannot be 
applied because not enough independent equations can be 
provided to the destination nodes from the relay nodes. In this 
scenario, other relaying schemes such as routing have to be 
used. 

4) General multi-way relay with 
Gaussian fading channel 

This is the general case of a relay network where the 
algorithm of compute-and-forward relaying scheme is derived. 
The achievable rate is expressed in (8). Since the 
instantaneous computation rate depends on the instantaneous 
channel coefficients, it is difficult to evaluate the overall 
performance of compute-and-forward in this scenario simply 
from the rate equation. In section IV.B, simulation will be 
used to demonstrate that the performance of compute-and-
forward with the commonly used decoding method described 
in [6] is much worse than the performance of joint detection 
using ML decoding algorithm. The joint ML detection can be 
expressed as the following equation: 







L

l

lmlmL h
l

1
x

21 xyminarg]x̂,,x̂,x̂[               (18) 

where   is the set of codewords of each source node. 

IV. Simulation Verification 

A. Performance of Parameter Selection 
Methods 
To verify the effectiveness of the new parameter selection 

method, many simulations have been carried out, and the new 
method shows to be much more efficient than the direct 
integer coefficients searching method. This is because over 
complex-valued channels, if the number of searching points 
per channel element is  , the complexity of the direct 

searching method is in the order of L2 , while the complexity 

of the new method is in the order of  , where  is the 

number of searching point for the scaling factor . 

To verify the accuracy of the new parameter selection 
method, the following simulation is carried out for a relay of 
two source nodes over real-valued channels. We assume the 
channel gain is 1.0 for the first source node, and the channel 
gain h for the other source node varies from 0 to 1.0. Both the 
proposed method and the direct searching method are tested, 
and the achievable rates of compute-and-forward with the two 
results are plotted below in Figure 3. with SNR=30 dB. It is 
shown that for smaller values of the channel gain, the result of 
the new method is much better. For larger values of the 
channel gain, the performances of the two methods are exactly  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

2

3

4

5

6

Channel Coefficient

R
a
te

 p
e
r 

c
h
a
n
n
e
l 
u
s
e
 (

b
it
s
)

 

 

Upper Bound

CF, SVP parameter selection method

CF, New parameter selection method

Decode Forward

 
Figure 3.  Performance comparison of our newly proposed parameter 

selection method and the direct SVP integer coefficient searching method, 

SNR=30 dB. 

the same. In the same figure, for comparison purposes, the 
achievable rate of decode-and-forward and the AWGN 
channel upper bound capacity are also plotted. 

B. Performance of Compute-and-
Forward Decoding Schemes 
For two-way relay, compute-and-forward has the highest 

achievable rate than any other relaying schemes [13]. For a 
general multi-way relay over Gaussian fading channel, the 
performance of compute-and-forward relaying scheme cannot 
simply be evaluated theoretically. Therefore we simulate a 
simple case to see how it performs. In the simulation, a relay 

of two source nodes over Gaussian fading channel is used. 2Z  
lattice codes of 2 points per-dimension and 4 points per-
dimension are employed in the source nodes, which are 
equivalent to 4-QAM and 16-QAM constellations. For 
comparison purposes, joint ML detection is also used to 
decode the codewords directly. Simulation results are plotted 
below in Figure 4.  and Figure 5.  

It can be seen that the performance of compute-and-
forward relaying scheme is much worse than that of joint ML 
detection at the relay node.  

V. Conclusions 
Unique solutions are proposed for the practical problems 

or challenges of compute-and-forward relaying scheme. The 
newly proposed parameter selection method is much more 
efficient than the commonly used direct integer coefficient 
searching method, while providing better searching results. 
The newly proposed multi-antenna receiving scheme at the 
relay nodes makes sure enough number of independent integer 
linear equations be received at the destination node. For a 
general multi-way relay over Gaussian fading channel, joint 
ML detection can achieve much better performance than 
compute-and-forward relaying scheme.  
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Figure 4.  Performance comparison of compute-and-forward and joint ML 

detection, two source nodes, 4-QAM constellation, Gaussian fading channel. 
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Figure 5.  Performance comparison of compute-and-forward and joint ML 

detection, two source nodes, 16-QAM constellation, Gaussian fading channel. 
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