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Abstract—Keywords and descriptors are important metadata 

for multimedia content. Such metadata are associated with the 

programme, and are generated to facilitate indexing, search, 

clustering, archiving, semantic analysis and many other potential 

applications. Information about performing or recording venues 

provides a useful cue for content search and authentication, but is 

difficult to obtain form the media content. This paper proposes to 

determine the recording venues from extracted room acoustic 

features contained in the soundtracks. Room acoustic decay 

curves are obtained via maximum likelihood estimation from 

recording. The decay curve is a statistical description of the 

impulse response of a room, and provides a good discriminator 

for recording venues. Machine learning is then performed on the 

estimated decay curves to make the decision. This paper presents 

the rationale of the method, describes the algorithms and 

validates the method by simulations. 

Keywords—acoustic feature,  recording venue, maximum 

liklihood estimation, machine learning, media content. 

I.  Introduction  
With the rapid growth of multimedia content on the 

Internet, ever increasing capacity of media archives, and the 
emerging of new media technologies such as multimedia 
content management systems, enhanced digital audio and 
video broadcasting and semantic web, methods to automate 
information extraction and generate metadata have received 
more and more attention in recent years to meet the demand of 
effective indexing and search of media contents. The 
standardization of Multimedia Contents Description Interface 
in MPEG-7 is an important milestone in the advancement of 
the technology, allowing the use of XML to store metadata 
and tag them alongside the actual media signals.  

There exist a number of MPEG-7 encoders and automated 
metadata generation schemes from soundtracks.  While the 
MPEG-7 employs up to17 temporal and spectral Low Level 
Descriptors (LLDs) to depict audio frames in great details for 
further analysis, the others takes an ad hoc approach to feature 
space selection [1]. At a high level, the selected LLDs or 
feature spaces are used to generate semantically meaningful 
metadata, i.e. keywords.  
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Figure 1 illustrates a typical structure of such high level 
metadata generators. On the first classification and 
segmentation layer, feature spaces are computed and 
processed to segment the soundtrack into speech, music or 
event sounds. They are time stamped and tagged for metadata 
generation and also sent to one of the three subsequent 
filtering and separation processing stages accordingly. The 
three different types of audio segments are cleaned using 
appropriate de-noising algorithms. For multiple talker speech 
signals, source separation may be performed where necessary 
and  possible. Three dedicated audio recognition/classification 
sub-systems are used: an automated speech recognition (ASR) 
sub-system, a music information retrieval (MIR) system, and 
an event sound classification system. A final stage gathers 
information from previous stages, performs logical 
reasoning/inference and semantic analysis to generate 
metadata. Such a system seems sophisticated enough to 
generate semantic metadata about the media content, but it is 
difficult to acquire the information about acoustics of 
recording environment or performing venues. 

 
Figure 1. A typical high level metadata extraction system for audio tracks 

 

Metadata that describe recording environment, either by 
specifying the venue or indicating acoustic conditions, e.g. in a 
large concert hall, with a long reverberation time or in a small 
recording studio with a very short reverberation time, are 
invaluable. It is also useful to be able to identify if a particular 
soundtrack is genuinely recorded or captured live in a 
particular venue or synthesized technically in a studio. 
Furthermore, features of acoustic environment can even be 
used to help authenticate recording work to some extent and 
therefore might be use for forensic purposes.   

This paper addresses these demands and proposes the use 
of blind machine audition techniques for acoustic features 
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developed in the past few years [2-6]  to determine acoustic 
feature from recorded soundtracks and provide extra 
information for additional metadata. 

II. Rationale  
Properties of sound propagation form sources to receiving 

positions in a recording space are described by acoustic 
transfer functions in the frequency domain or impulse 
responses in the time domain. The room impulse responses are 
determined by the geometrical shape and structure of the 
space, acoustic properties of interior surfaces, occupants 
(including furniture and audience) and source-receiver 
positions. Therefore the impulse responses are unique acoustic 
features of that space. Figure 2 sketches a typical impulse 
response in a concert hall.  

Imagine that an impulsive sound excitation is applied in 
the room, shortly after the arrival of direct sound, discrete 
early reflections follow, and then an exponential decay process 
represents the reverberation [7].  

 

            Figure 2. A typical impulse response of a concert hall 

The room impulse response colours the sound sources, 

hence listeners perceive different acoustic effects in different 

venues. Such coloration is encoded in the recorded 

soundtracks by the convolution of the source and impulse 

response, since room is essentially a linear transmission 

system of sound. 

 

                 )()()( thtstr                        (1) 

 

where r(s), s(t) and h(t) are received sound, source and room 

impulse response respectively. If impulse responses can be 

extracted from the recorded soundtracks and a large database 

of impulse responses from existing venues is made available, 

the recording venue can be determined from matching the 

impulse responses. Room impulse responses are non-

minimum phase in nature. De-convolution to obtain the room 

impulse response is known to be an ill-posed inverse problem 

mathematically. Extracting the impulse responses from 

recorded soundtracks means that the source s(t) is not 

available. Blind de-convolution increases the level difficulty. 

No blind de-convolution or approximation methods developed 

so far can resolve the subtle details of room impulse responses 

necessary to effectively differentiate two different rooms, to 

the best of the author’s knowledge. Room acoustic parameters 

such as reverberation parameters decay curves are statistical 

features of impulse responses [7]. Especially the decay 

curve )(
~2 th , which describes how the energy level in the 

space reduces over time when a stationary excitation is 

stopped. It can be analytically calculated from the impulse 

response using the Schroeder backwards integration following 
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In fact common monaural room acoustics parameters are 

evaluated from the decay curves. It is therefore postulated that 

room acoustic parameters and decay curves can be used as 

feature spaces to identify different recording spaces. 

For the purpose of in-situ room acoustics measurements, a 

number of semi-blind and blind estimation methods for room 

acoustic parameters and decay curves were developed [2-6]. In 

particular maximum likelihood estimation method with a 

multi-section decay model has been proven adequate to obtain 

decay curves from received or recorded arbitrary sounds such 

as speech, music or event sound. With the estimated decay 

curves and the known decay curve of performance venues 

stored in a database, the recording venue can be determined by 

a machine learning scheme or simply using the Euclidean 

distance of the two with a suitably determined threshold. 

III. Extracting Decay Curves from 
Soundtracks 

Blind estimation of decay curve can be achieved using 

Maximum Likelihood Estimation (MLE) of decay phases 

found in speech, music or other sound signals based on a 

suitably chosen decay model [6]. In this study, decays found in 

signal envelopes are to be estimated by the MLE. 

The MLE is a parametric estimation method.  If there 

exists a parametric model for a statistical process, in the form 

of a probability density function f, then the probability that a 

particular set of parameters   are the parameters that 

generated a set of observed data x1, x2, … xn, is known as the 

likelihood L denoted by 

          )|...,()( 21  nxxxfL                        (3) 

In the MLE, an analytic model of an underlying process 

needs to be assumed first determined and then a likelihood 

function formulated. The parameters that result in a maximum 
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in the likelihood function are the most likely parameters that 

generated the observed set of data. Once the model is chosen 

and maximum likelihood function formulated, many existing 

optimization routines can be used to determine the 

parameter(s) by maximizing the )(L . Let a room impulse 

response h[n] be modelled as a random Gaussian sequence 

r[n] modulated by a decaying envelope, e[n]. 

               ][][][ nrnenh                           (4)                                         

where n is the sample number. The envelope is represented by 

a sum of exponentials:  

               
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where ak represent decay rates, αk are weighting factors and M 

is the number of decays. If two decay rates are chosen, it can 

be weighted by a single factor. 

             
nn

aane 21 )1(][             (6)                                           

where a1 and a2 represent the two decay rates and α is a 

weighting factor that changes the level of contribution from 

each individual decay.  This enables the representation of an 

energy response with a non-uniform decay rate and by 

changing α the model can adapt to best fit the decay phases. 

More exponentials, as formulated in Equation 5, can be used 

to model the decay but at the cost of extra computational 

overhead when optimizing the likelihood function. However, 

as the purpose here is to identify the recording venues using 

acoustic features, the two decay rate model was previously 

found adequate for room acoustics modelling [6].  The 

likelihood function for the two decay rate model is formulated 

below: The likelihood of a sequence of independent, 

identically distributed, Gaussian variables occurring can be 

written as  
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where µ is the mean and σ
2
 the variance of the Gaussian 

process.  The room impulse response model has no DC 

component, so µ=0. For the decay phases found in 

reverberated sounds s, the envelope is of interest. Thus the 

probability of the sequence, which has a zero mean and is 

modulated by an envelope e, is given by 

                                       






















1

0

][2

][
22

2

][2

1
),;(

N

n

ne

ns

e
ne

esL



           (8)                                        

rearranged to give: 
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The proposed decay model Equation 6 is substituted into 

Equation 9.  It is more convenient to work with a logarithmic 

likelihood function, since the multiplication becomes 

summation. The log likelihood function becomes 
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Maximizing the log likelihood function with respect to 

the decay parameters α, a1 and a2 yields the most likely values 

for these parameters. This is achieved by minimizing the 

minus log-likelihood function. The Sequential Quadratic 

Programming (SQP) type of algorithm is found suitable for 

this application [8]. Once the parameters in Equation 6 are 

determined, the decay curve is obtained.  

MLE is performed on the envelope of sound signals 
obtained via Hilbert Transform. A 0.5 second moving 
windows over typically a 60 second excerpt would be 
sufficient. Given the model described in Equation 3, the decay 
curve is completely determined by three parameters α, , a1 and 
a2. 

IV. Machine Learning Approach 
to Venue Identification  

A. Octave band decay curves as a 
feature space  
As discussed in Section 2, decay curves of the recording 

spaces provide a good feature space to differentiate acoustics 
and hence the venue. Nonetheless, to further differentiate 
subtle discrepancies found in recording spaces, octave band 
features were used and found beneficial. The decay curves are 
estimated from recorded music signals in 5 octave bands, 250 
Hz, 500 Hz, 1 kHz, 2 kHz and 4 kHz sub-bands respectively, 
yielding a feature space with 15 parameters (three parameters 
as described by Equation 6 were used for each sub-band). This 
is done by pre-filtering the soundtracks with octave band 
filters, and then performing the MLE algorithm.  

B. Artificial Neural Networks classifier  
A straightforward Euclidian distance between the MLE 

estimated decay curves and pre-measured and saved ones can 

be use as an index to quantify the level of the similarity of 

recording spaces. The distance provides an indication of how 
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likely the recording was taken in a particular space. A 

threshold can be determined for decision making. However, 

there are minor discrepancies in predicted decay curves due to 

different source (music) signals. In this study machine 

learning is used to statistically learn from examples and help 

better make the decision.  

Twelve impulse responses acquired in different recording 

venues (in this study 12 different concert halls) are convolved 

with a variety excerpts from 20 anechoic music excerpts to 

generate a training/validation data set. The objective is to train 

the system to recognize sound tracks recorded in a particular 

hall from others.  Six typical feed-forward artificial neural 

networks (ANNs) as depicted in Figure 3 are used, each is 

trained to detects one particular concert hall. The ANNs has 

two middle layers with sigmod functions and a bi-level output 

layer. The numbers of neurons are 15, 12, 6 and 1 on input 

layer, inner layers and output layer respectively. Typical 

training and validation regimes were followed. Results give 

100% correct recognition of the 6 intended concert halls.    

  Figure 3. One of the 6 ANNs  

Although the number of impulse responses used to train 
and validate the ANNs is not particularly large, it is worth 
mentioning that the method is still deemed to work very well. 
The 12 impulse responses used are all concert hall ones, with 
reverberation times circa 2 seconds.  The results indicate that 
the use of octave band decay curve can differentiate subtle 
discrepancies of these concert halls, hence providing a good 
feature space for venue identification and authentication.  

V. Discussion about Application 
Scenarios  

Two major application scenarios are considered. The first 
is to determine the recording venue. The second is to indicate 
the type of recording spaces. 

A. A. Identify Recording venues 
As validated in section IV, a set of ANNs can be trained, 

with each recognize a particular venue but rejects others. This 
means that a fully working version of the algorithm will need 

to be excursively trained on all recording venues to be 
recognized. It works fine for venue authentication of a limited 
number of venues where previously recorded samples are 
available. One possible way to mitigate the need to collect a 
lot of information about recording venues and train a large 
number of ANNs, is to use the Euclidean distance of the 
proposed feature spaces as an index to determine how likely 
the recording is make in a particular hall.   

B. Identify the type of recording space  
The second application scenario is to determine what type 

of venue the recording was made in. This can be a relatively 
easier task. From the MLE estimation method, decay curves 
can be reconstructed according to Equation 6. The 
reverberation time (RT) can subsequently be calculated 
following the ISO 3382 standard, i.e. a line fitting to the 
logarithmic decay curve in the region from -5 to -35dB and 
then extrapolate line to determine the time that it takes for the 
energy to decay by 60 dB [9]. Based upon a knowledgebase of 
typical reverberation times for various possible recording 
spaces, the types of recording venue can be determined, e.g. 
small room if RT<0.6 s,  large recording studio if RT is circa 1 
s, or concert hall, if RT>1.5s.  

C. Compressed sound tracks  
It is known that audio classification algorithms often show 

performance degradation when compressed signals are 
presented to them. MPEG-2 Audio Layer III compressed 
signals down to 96 kbps have been used to test the training 
system, the 100% classification accuracy was maintained. This 
is not surprising, as the feature space is taken from the 
envelopes of the signals, a very low frequency statistical 
feature that is not affected by common audio compression.   

VI. Concluding Remarks 
Commonplace automatic metadata generation tools and 

systems do not typically extract information about acoustic 
conditions of recording venues. Nor would they generate 
recording venue related metadata from soundtracks. Room 
acoustics decay curves seem to offer a good feature space to 
differentiate different recording venues. A dual-decay model 
based maximum likelihood estimation can be used to 
adequately estimate room acoustics decay curves from 
recorded soundtracks. Combining the blind decay curve 
estimation and a machine learning algorithm trained on a 
database of acoustic features of various spaces, recording 
venues can be determined.  

The results presented here are based on a pilot study with a 
small number of cases, more testing on a larger database and 
fine tuning of the algorithms are needed. 
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