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Abstract—We present in this paper a powerful low-cost 

method for real-time digital signal analysis and measurement 

based Discrete Fourier Transform. This measurement 

system needs understanding the mathematical background 

and  the computational implementation, using the adequate 

cables, connectors, as well as having knowledge and 

experience for interpreting the results obtained. This paper 

tries to understand the fundamental concepts in DFT-based 

measurements, providing a better comprehension of the 

measured parameters, procedures, and interpreting the 

resulting data. 

We attempt to make this paper summarized as much as 

possible; at the same time, to treat the most important 

aspects showing the different stages implemented into the 

system developed. 
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I. Introduction 
 

The system measurement that we present in this paper 

(figure 1) is a computer-based measurement that takes a 

continuous signal at its input, and samples it into a 

sequence of a discrete data x(n). This periodic sampling is 

achieved using the PC sound card. The discrete-time 

signal is then converted from the time domain to the 

frequency domain through the calculation of the Discrete 

Fourier Transform DFT [1-3] to estimate the spectrum [4]. 

We use the Fast Fourier Transform FFT algorithm [5-8] 

for the DFT implementation. Windowing is a technique 

used to reduce the leakage effect. With the presence of the 

background noise, it is difficult to detect the signal of 

interest; for this reason, we use some averaging techniques 

in order to reduce the background noise and extract a 

signal from the noise. We close with a summary of the 

measurement parameters showing its effect on the analysis 

procedure. Here, we describe the different stages of the 

system developed.  

We use the term main lobe to refer to the energy of the 

principal frequency component of the input signal.  
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Figure1. System measurement Bloc diagram 

 

II. Sampling 
 

In the input we have the signal to be analyzed which is an 

analog signal. The first stage is the periodic sampling 

which takes in its input, the analog signal, and gives us in 

its output, a sequence of discrete data values.  

 
Figure 2. Sampling stage 

The sequence of samples is an approximation that 

represents the original input signal in the digital domain, 

and must respect the condition imposed by the Nyquis’t 

theorem: the sampling rate must be greater than twice the 

highest frequency component of the signal to be sampled. 

For example if we want to analyze an input signal 

containing various frequency components whose 

maximum value is 100 kHz, then the sampling frequency 

fs must be as minimum 200 kHz. If this condition is not 

respected a phenomena known as aliasing occurs [1,2]. 

The frequency components that are above the Nyquist 

frequency are undersampled, and appear as lower 

frequency components. For this reason, in the practice, an 

analogue filter is used at the end of the sampling stage, in 

order to attenuate all unwanted frequency components 

above our analysis range. This filter is named anti-aliasing 

filter. 
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III. Signal Capturing 
Several implementations can be used to capture the 

waveform using a data acquisition device. Nowadays, 

advanced techniques known as ―simultaneous multi- 

buffer acquisition and readout (SAR) mode [9]‖ is used to 

improve the precision of the capturing method with no 

information lose, specially used in the case of measuring 

pulse that can appear in a very short time. In our 

application we use the double buffering technique. It 

consists of using two buffers in order to achieve the 

processes of continuous capturing without loss of data. 

While one buffer is capturing data, the other is making the 

processing task. The figure 3 describes this process. 

 
Figure3. Capturing process protocol used 

Time processing stage will include DFT calculating (FFT 

algorithm), windowing, plotting, and averaging. This time 

must be inferior to the time that takes the buffer to capture 

the samples. If this condition is not respected, we lose 

information’s when the device is waiting for a new buffer, 

and if some signal appears at that moment our analysis 

method will not be able to detect this signal. To overcome 

this problem, a possible solution is to use more buffers if 

the system implementation allows it, or reduce some 

operations from the processing stage. 

The size of the buffer must be an integral multiple of the 

every sample size (for example if we work with 16 bits 

each sample size, we can take a buffer as N_DFT*2*16 

bits). 
 

IV. Discrete Fourier Transform  
After the stage of the sampling, the next step is to convert 

the signal from the time domain to the frequency domain. 

This is achieved by the Discrete Fourier Transform DFT 

which is a mathematical calculation used to detect the 

frequency components and the energy presented at this 

input signal component. A different method can be used to 

estimate the spectrum [4], and the most famous algorithm 

for the DFT calculation is the Fast Fourier Transform 

known as FFT. 

we take a N_DFT sample to achieve the DFT calculated 

by applying the FFT algorithm. The input is a sequence x 

(n) 

 Figure 4. DFT stage calculation 
As we are taking a finite number of points every time, this 

situation is similar to multiplying the sampled input 

sequence by a rectangular window of value 1 as shown in 

the figure 5. 

 
Figure 5. representation of the rectangular windowing effect  

The figure 5 is only a representation that seems to be as a 

perfect situation, because the size of the DFT was chosen 

to fit exactly an integer number of cycles (in this example 

5 cycles). This situation is difficult to occur in the real 

time signal acquisition. (For example if we want to 

measure a 1.6 kHz sine-wave taking 512 sample at a rate 

of 8 kHz per second, we may have to treat 102.4 cycles 

every time loop). The figure 6 represents an 

approximation of what we are taking in the real situation. 

 
Figure 6. representation of the rectangular windowing leakage effect 

In addition to the case of non-integer cycle mentioned 

above, we have discontinuity at the beginning and at the 

end of the rectangular window. These two factors may 

cause the Leakage [1,2].  

 

V. Windowing 

In order to reduce the leakage effect we use the 

windowing technique. The input sequence x(n) is 

multiplied by a function window w (n) before the DFT is 

performed. 
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Blackman window  
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We put an example measuring the leakage effect by using 

a 13 kHz sine wave signal modulated with 9MHz AM. 

The figure 7a shows the signal obtained in the frequency 

domain with no window applied (rectangular window), 

while the figure 7b shows how the window, in this case a 

Hanning window, reduce the effect of leakage. 

 
Figure 7a. illustration of the leakage effect in real time signal analysis 

 
Figure 7b. illustration of the leakage effect in real time signal analysis 

Applying a Window reduce the leakage effect, but at the 

same time reduce the magnitude of the output, for this 

reason, it is necessary to multiply the output magnitude 

DFT value by a scaling factor [10]. Table 1 shows the 

different scaling factor for the different window used in 

our measurement system. 
 

TABLE 1: DIFFERENT SCALING FACTOR FOR THE DIFFERENT 

WINDOW 

Window Scaling Factor 

Rectangular 1 

Hamming 0.54 

Blackman 0.42 

Blackman-Harris 0.42 

Hanning 0.50 

Notice that the main lobe in the case of rectangular 

window is narrower; this is due to the effect of the 

window on increasing the effective bandwidth by a factor 

known as the equivalent noise power bandwidth of the 

window [10]. 

VI. The Parameters Used For The 
Analysis 
Let’s see the most important parameter to manipulate 

when we are dealing with the signal analysis. It is 

important to keep in mind that we take N sample points to 

produce N/2 useful frequency point (DFT symmetry 

propriety), the highest frequency of the analysis depends 

on the sampling rate fmax= f/2, The anti-aliasing filter will 

cut off all frequency components higher than a specific 

value which depends on the filter frequency (fc), The 

lowest frequency will depend to the minimal time to 

perform one DFT cycle.  

The parameters that we can modify in our system 

measurement are: 

- The frequency of the data sampling (f's) 

- Number of points used, or the DFT size (N_DFT) 

- Type of the window used 

- Additional DSP techniques (Averaging, Zero padding, 

filters, etc.) 

The frequency analysis is defined by the following 

equation: 

N

mfs
mfanalisis )(  

It is possible to see the DFT stage as a kind of band pass 

filter, whose central frequency is the frequency analysis, 

whose bandwidth and gain can be modified. The 

following figure shows the DFT model like a system input 

x (n), which is a data sequence coming from the sampling 

stage, and the outputs as sequence of X (m) being the 

calculation result of the DFT. We put in the figure the 

N_DFT, and window as the parameter used to adjust the 

bandwidth and gain 

 
Figure 8.  Bandpass DFT model at a given frequency component 

The DFT result will produce results at all the frequency 

analysis indicating which amplitude exists in x (n) at the 

frequency analysis calculated at a given point m. The 

figure 9 is a model for the whole DFT calculating. 

 
Figure 9. Bandpass DFT model 
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Every time we increase the N_DFT, we have a narrower 

bandwidth, which gives us the advantage of increasing the 

possibility of detection and separation energies; because 

as N_DFT is higher, the frequency resolution is better. 

Besides this advantage, the amount of the background 

noise is less present in the measurement. The figure 10 

shows the example of this situation. 

 
Figure 10. Narrow system measurement 

Increasing the N DFT has the inconvenient of increasing 

the processing time. Using lees point N_DFT will reduce 

the resolution, and increase the bandwidth of the bandpass 

filter model. This situation is represented by the figure 11. 

 
Figure 11. Wideband system measurement 

In this situation we can’t distinguish between signals F1 

and signal F2, furthermore, the measurements will include 

more quantity of background noise 

Let see an example to illustrate what we explained above. 

In the figure 12, we measure a 300Hz sinewave modulated 

en AM with 8 kHz, sampled at 48 kHz. We use a 

Hamming window. 

In the case of figure 12a we take 256 N_DFT points and 

we represent the 128 first points, while the figure 12b, is a 

zoom representation. Notice that this measurement gives 

us information that we have at the input a signal of 

frequency 8.013 kHz. 

  
Figure 12a. 256 N_DFT point 300Hz sinewave modulated en AM with 8 

kHz, sampled at 48 kHz 

 
Figure 12b. 256 N_DFT point 300Hz sinewave modulated en AM with 8 

kHz, sampled at 48 kHz 

In figure 13a, we increase the number of points taken 

from 256 to 512. Then in figure 13b, we see that the main 

lobe form has changed, but it is difficult to decide if this 

situation is due to the apparition of noise or the presence 

of other frequency components near to the main lobe. 

 
Figure 13a. 512 N_DFT point 300Hz sinewave modulated en AM with 8 

kHz, sampled at 48 kHz 

  
Figure 13b. 512 N_DFT point 300Hz sinewave modulated en AM with 8 

kHz, sampled at 48 kHz 

The figure 14 represents the case of taking 1024 DFT 

point. Now we can see that this signal contains more than 

one frequency component.  

 
Figure 14a. 1024  N_DFT point 300Hz sinewave modulated en AM 

with 8 kHz, sampled at 48 kHz 

   
Figure 14b. 1024  N_DFT point 300Hz sinewave modulated en AM with 

8 kHz, sampled at 48 kHz 

Increasing the size of the DFT to 4096 points, we get the 

signal represented in the figure 15. We can now see with 

precision that we obtain a main lobe centered to the 
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frequency 8kHz with two sidebands, the right one with 8.3 

kHz and the left one with 7.7 kHz 

 
Figure 15a. 1024  N_DFT point 300Hz sinewave modulated en AM with 8 

kHz, sampled at 48 kHz 

   
Figure 15b. 4096 N_DFT point 300Hz sinewave modulated en AM with 

8 kHz, sampled at 48 kHz 

Increasing the size of the DFT has the advantage of 

having more processing gain [2]. This involves the 

possibility of extracting signal that is tucked into noise. 

The output SNR of the DFT increases when the size 

N_DFT increases. 

We demonstrate this by the following measurements 

made with our system measurement. The figure 16 is a 6 

kHz sine-wave signal received through a wideband 

receiver. We plot the 128 outputs of a 256-point DFT. It 

is very difficult to detect the input signal of 6 kHz. If we 

change the size of DFT to 512 points, we can now see the 

presence of the input signal. Increasing the N_DFT to 

1024 and 2048, we obtain the results shown in figure 16c, 

and 16d. As we can notice, the amplitude of the resulting 

frequency component increases as the number of points 

N_DFT increases. Also we see that the main lobe is 

narrower.  

 
Figure 16a. 6 kHz sine-wave signal received through a wideband receiver 

 

 
Figure 16b. 6 kHz sine-wave signal received through a wideband receiver 

 
Figure 16c. 6 kHz sine-wave signal received through a wideband receiver 

 
Figure 16d. 6 kHz sine-wave signal received through a wideband receiver 

 

The signal-to-noise ratio (SNR) is defined [1,2] as the DFT’s 

output signal-power level over the average output noise-power 

level. The figure 16 shows also that the SNR increases when the 

DFT size increases.  

The leakage has also the effect of increasing the 

effective background noise and reduces the DFT’s 

output SNR. 

VII. Averaging 
The averaging technique improves the accuracy and 

repeatability of measurements, especially with the presence of  

noise. When the level of the signal of interest is nearly equal to 

the noise level, it is difficult to extract this signal from noise. 

We implemented the averaging technique in order to overcome 

this trouble. The figure 17 shows the averaging techniques 

implemented into the system measurement presented in this 

paper. 

Lineal Averaging 
FFTt (I) = (FFT (I) +FFTt-1 (I))/n 

Exponential Averaging 
FFTt (I) = FFT (I). 1/N+FFTt-1 (I). (N-1) /N 

Maximum Averaging 

If FFT (I) > FFTt-1 (I) then FFTt (I) =FFT (I) 
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Figure 17. Averaging techniques implemented 

 

We put an example of the results obtained when applying 

the averaging on a signal received with a wideband 

received with the presence of noise. This example 

measures a 13 kHz signal, modulated AM with 1MHz 

carrier. We take 1024 DFT points; we use a Hanning 

window, and a frequency sampling of 44.1 kHz. 

The figure 18 shows the result obtained. We see in the 

figure 18a that is not possible to identify the signal 

received because we have a higher level of background 

noise. 

When applying the average type ―maximum‖, we obtain the 

result shown in the figure 18b. Notice that the peak appears 

now clearly at 13 kHz. 

 
Figure 18a. Example measurement of a 13 kHz signal, modulated AM 

with 1MHz carrier 

 

     
Figure 18b. Example measurement of a 13 kHz signal, modulated AM 

with 1MHz carrier 

VIII. Conclusion 
 

The demonstration measurement in this paper is made using the 

PC sound card as a tool of data acquisition. This solution 

presents the limitation of the sampling rate which is limited to 

96 kHz, and the ant-aliasing filter which cut off signal up to 22 

kHz.  

We have presented the more relevant parameter to be 

manipulated in order to analyze and measure signals. Changing 

one parameter affects all the other parameter. Depending on the 

application, accordingly, we can decide to manipulate the 

adequate parameter.  

We see that the size of the DFT is an important parameter which 

affects the improvement of the SNR, resolution, magnitude, but 

there are always tradeoffs between this improvement and the 

processing time that take the method to calculate the DFT. 
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