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Abstract—Combinatorial optimization happens when there are 

two or more objectives to be optimized in solving a problem. The 

DNA words or oligonucleotides designing are one of a multi-

objective combinatorial optimization problem. In this paper, the 

designations implied minimizations of H-measure, similarity, 

hairpin and continuity functions subjected to a predefine range 

of melting temperature and GC-content. A novel multi-swarm 

optimization approach is introduced to design a library of DNA 

strands. This approach is called vector evaluated differential 

evolution particle swarm optimization (VEDEPSO). The results 

obtained from the VEDEPSO algorithm is evaluated using Pareto 

dominance technique. A list of selected non-dominated solutions 

is shown as the final results from the research. 
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I. INTRODUCTION 

DNA code words or oligonucleotides designing are a 
process of arranging the four DNA alphabets, A, T, G and C 
within a predefined length. These arrangements are then 
evaluated using some combinatorial constraints. The 
constraints used in this research are four objective functions, 
named H-measure, similarity, hairpin and continuity. Two 
other constraints, melting temperature and GC-content are 
applied to limit the chemical characteristics of the designed 
strands. Ensembles of DNA alphabets create a unique DNA 
library which is mainly used for molecular computing [1], 
DNA nanotechnology [2, 3], DNA tagging [4], DNA 
microarray [5], genetic engineering and other biotechnology 
applications. 

Since previous researches [6, 7, 8, 9] that have been 
conducted using single swarm particle swarm optimization 
(PSO) had a major drawback, because single swarm does not 
have fair minimizations of all four objectives. Therefore in 
this paper, a multi-swarm optimizing technique with hybrid of 
differential evolution (DE) with PSO algorithm, named vector 
evaluated differential evolution particle swarm optimization is 
employed to designed better DNA libraries. 

II. PROPOSED METHODOLOGY 

In 2009, a novel optimizer known as vector evaluated 
differential evolution particle swarm optimization or 
VEDEPSO is proposed by Grobler and Engelbrecht [10]. It is 
a combination of vector evaluated particle swarm optimization 

(VEPSO) and vector evaluated differential evolution (VEDE) 
algorithms. As in [10] the performance of VEDEPSO 
algorithm is proven to be better than VEPSO and VEDE. The 
algorithm includes four swarms, S1, S2, S3 and S4 with each 
being assigned to minimize one objective function. 

The minimizing assignments are: Swarm 1 (S1) - H-
measure fitness; Swarm 2 (S2) – similarity fitness; Swarm 3 
(S3) – continuity fitness, and Swarm 4 (S4) – hairpin fitness. 
Discrete search space is more suitable to be implemented into 
this research because DNA codes designing are a discrete 
problem. The fitness is calculated based on an average of each 
objectives minimized by its swarm. The formula and the 
parameters for each objective functions and the two 
constraints are referred to [11]. In each swarm 20 
particles/individuals are randomly positioned. Each 
particle/individual has 280 binary data which is then encoded 
into seven DNA strings of 20-mer length each. In this 
algorithm, the binary representations of  the four DNA 
alphabets are such as ―00‖ for ―A‖, ―01‖ for ―C‖, ―10‖ for ―G‖ 
and ―11‖ for ―T‖. 

There is an information exchange among all four swarms, 
which is depicted in Fig. 1. Randomly, the best information, 
best particle/individual is been used by its own swarm and 
also been transferred to other swarms to ensure a balance 
simultaneous minimization between all the four swarms. 

S1 S2

S4S3

 

Figure 1.  Information flow ofbest particle/individual in VEDEPSO. 

In this approach, discrete PSO optimizer is used in the first 
and third swarms, S1 and S3 while discrete DE is applied in the 
second and fourth swarms, S2 and S4. 
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A. Discrete PSO 

As in this VEDEPSO algorithm, the discrete PSO 
algorithm searches for particle with optimum fitness in S1 and 
S3. Discrete PSO is developed in 1997 by Dr. Kennedy and 
Dr. Eberhart [12]. The idea of PSO is derived based on bird 
flocking, fish schooling and swarming concepts. At each time, 
the lowest fitness value of each particle is memorized and 
noted as the pbest particle. As the particles move around the 
algorithm tracks the particle with an optimum fitness value 
and upgrade it as the gbest particle. The velocities and 
positions of each particle are formulated using  (1) through 
(4). 

Vij
new

= ωVij
old

+ c1r1(pbestij- Xij
old

) + c2r2 (gbest- Xij
old

) 
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Vij
new

and Xij
new

 are the velocity and position of jth 
dimension of the ith particle respectively. r1 and  r2 are 
random numbers between the interval [0, 1]. c1, c2 are the 
acceleration coefficients with a constant 0.5 value each. The 
inertia weight, ω decreases linearly between maximum inertia 
weight, ωmax and minimum inertia weight, ωmin using (2 . ωmax 
and ωminare fixed with 0.9 and 0.4 values respectively. Current 
iteration and maximum number of iterations are represented 
by k andkmax respectively. S(.) is a sigmoid function and r3 is a 
quasi random number uniformly distributed within the range 
of [0.0, 1.0]. The discrete search space implies a velocity 
limitations within a range of |-0.5, 0.5| for exploitations that 
directs the searching within feasible area. 

B. Discrete DE 

Swarms S2 and S4 utilize DE algorithm to search for 
optimum solutions. DE is a popular evolutionary algorithm 
technique developed by Storn and Price [13] in 1997. DE 
operates based on three main functions, mutation, crossover 
and selection. Discrete DE is proposed by Engelbrecht and 
Pampara [14] in 2007. DE/best/1/bin is selected and used in 
the VEDEPSO algorithm. Therefore the mutation and 
crossover function are calculated as in (5) through (7). 
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whereXij
mutant

 is the mutated individual of jth dimension of the 
ith individual. The mutations of each individual occur based 

on a condition that the parent individuals, i   i1   i2. F is a 
scaling factor and CR is the crossover constant which are both 
fixed to 0.5 values. jrand is a randomly chosen integer within 
[1, D] where D is the total number of dimensions in an 
individual.    

   
and   

   
are the previous mutated individual 

and the new offspring individual respectively of jth dimension 
of the ith individual. S(.) is a sigmoid function and r4 and r5 are 
quasi random numbers uniformly distributed within the range 
of [0.0, 1.0]. Fig. 2 explains pseudo code for the 
implementation of VEDEPSO for DNA words designing. 

With each swarm, S1, S2, S3, S4 
Randomly initialize velocities and positions of all particles and individuals in 

a swarm 

For swarm, S1, S3 

For every n particle, i1, i2, i3, i4, . . . ,in 

Calculate the fitness values 

If f (Xij
new) <f (pbestij), Then pbestij = Xij

new 

 If f (pbestij) <f (gbest), Then gbest = pbestij 

 If f (gbest) <f (best), Then best = gbest 

 End For  
 

 Update pbestij, gbest and best particles in an archive 

 For every n particle, i1, i2, i3, i4, . . . ,in 

Calculate particle’s velocity using (1  and (2  

 Limit the velocity of particle by |-0.5, 0.5| 

 Calculate particle’s position according to (3) and (4) 
 End For 

End For 

 
For swarm, S2, S4  

 For every n individual, i1, i2, i3, i4, . . . ,in 

Calculate the fitness values 

 If f (Xij
new) <f (Xij

old), Then best individual = Xij
new 

 If f (best individual) <f (best), Then best = Xij
new

 

 End For  

 

Update best individual and best individuals in an archive  
 For every n individual, i1, i2, i3, i4, . . . ,in 

  If a random selection of i   i1   i2 Then 

Calculate new offspring according to (5) through (7) 
  End For 

End For 

Until maximum number of iteration is achieved 

Update non-dominated particles/individuals in an archive 

Figure 2.  Pseudo code of VEDEPSO for DNA words designing. 

C. Pareto Dominance Concepts 

In any multi-objective optimizations, a set of Pareto 
optimal solutions are produced based on Pareto dominance 
concept. This concept mentioned that a particle ux dominated 
another particle vx if and only if f(ux    f(vx) for all x-objectives 
or f(ux) <f(vx) for at least one objective. Strictly, in the Pareto 
optimal solutions there should not have any other particle ux

’
 

that has f(ux
’
    f(ux) [15]. The non-dominated particles are 

selected as the solutions for the multi-swarm VEDEPSO 
algorithm. 

III. RESULTS AND DISCUSSIONS 

The VEDEPSO algorithm runs for 10 times with each of 
1000 iterations. The algorithm was developed using Microsoft 
Visual Basic 2008. Each designed DNA strands are limited 
within 30–80 °C and have 30–80 percents of GC-content. The 
parameters applied during the code words designing are shown 
in Table I. As a result, the algorithm attained an average fitness 
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svalue of 33.171 for the S1, 44.371 for the S2 and 0.00 for both 
S3 and S4. The algorithm works very well to optimize each 
objective concurrently. Nevertheless, the Pareto distributions 
among swarms are not so balanced. Still major empty gaps 
occur in the fitness distribution. These indicate that the 
algorithm needs some improvement to minimize the distance 
among every particles’ fitness. However, the information 
exchanging scheme of best particle and individual among all 
swarms for VEDEPSO works efficiently in directing every 
particle/individual towards global solutions. 

 

TABLE I.  PARAMETERS USED IN THE DNA CODE WORDS DESIGNING 

 

 

Accurate parameter selections for c1, c2, CR and F also 
ensured quick redirections of new particles and individuals to 
better solutions in a swarm. Therefore it even reduces the 
computational time. The mutation and crossover operations 
implied also create diversity between every individual 
becausethe differences among all individuals are computed and 
minimized. The discrete search spaces allow the two searching 
agents, PSO and DE to have better explorations in the aim of 
obtaining their global solutions. Last but not least, 4 non-
dominated particles and individuals are listed in Table II. 

IV. CONCLUSIONS 

Overall, the VEDEPSO algorithm successfully optimizes 
all objective functions simultaneously. Both PSO and DE own 
a simple and good optimizing mechanism, therefore 
hybridizing them together into an algorithm manage to 
minimize complex DNA words problem. Anyhow, the 
algorithm requires more improvement to reduce the fitness 
distribution among every swarm. 
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Number of runs 10 

Number of iterations 1000 

DNA 
words 

Number of sequences 7 

Length of each sequence 20-mer 

Range of Tm 30 – 80 oC 

Range of GC % 30 – 80 % 

DE and 
PSO 

Number of particles/individuals, i 20 

ωmax 0.9 

ωmin 0.4 

c1 0.5 

c2 0.5 

Random values: r1, r2, r3, r4, r5 [0, 1] 

F 0.5 

CR 0.5 

Vmin, Vmax [-0.5, 0.5] 

Tm 

Na+ 

self complementary 

strands (1M); 
non- self 

complementary strands 

(1/20M) 

CT 

self complementary 

strands (10nM); 

non- self 
complementary strands 

(10/4nM) 

H-measure, 
Similarity 

Hcon, Scon 6 

Hdis, Sdis 17% 

Continuity Threshold, t 2 

Hairpin Pair, p; Ring, r 6 
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ZDT test problems. In 2011 Fifth Asia Modelling Symposium (AMS), 2011, pp. 32–36. 

 

 

 

TABLE II.  DNA LIBRARY OF FOUR NON-DOMINATED PARTICLES/INDIVIDUALS OBTAINED FROMVEDEPSO ALGORITHM 
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1 20 

CTCTCTCTATGCTATGCTCT 38.40 45 27 184 0 0 

CTCTATGCTATGCTCTCTCT 41.01 45 27 192 0 0 

ATGCTATGCTCTCTCTATGC 40.85 45 32 184 0 0 

TATGCTCTCTCTATGCTATG 37.74 40 32 176 0 0 

CTCTCTCTATGCTATGCTCT 38.40 45 27 184 0 0 

CTCTATGCTATGCTCTCTCT 42.58 45 27 192 0 0 

ATGCTATGCTCTCTCTATGC 32.03 45 32 184 0 0 

2 1 

GTATACGGTAGACGAGCCCT 43.35 55 53 42 9 0 

GTCAGTCACAAGGAGAGGTT 52.67 50 45 44 0 0 

ACCTAAGTTGCGACTGTGGA 42.84 50 45 40 0 4 

TGCAAACGATTCGTAAAGGA 38.11 40 42 53 25 0 

CAATGGTCACCAGGACTGAA 45.01 50 45 47 18 0 

TGAGAAGAATTCACCGAATT 41.45 35 44 44 9 0 

CGGATGCACACGGCTCGTAG 41.52 65 54 48 0 0 

3 15 

TACTACTGATGCCTATTACT 35.00 35 55 135 0 4 

ACTGATTCCTATTACTACTG 36.90 35 58 144 0 0 

ATTCCTATTACTACTGATTC 33.76 30 52 154 0 0 

CTATTACTACTGATTACTGA 35.16 30 52 155 0 0 

TTACGATTACTACTGATCAC 38.55 35 54 150 0 0 

GATTACTACTGATCACGGTT 38.62 40 55 150 0 0 

ACTACTGATTACGGTTACTA 29.93 35 52 134 0 0 

4 8 

AGCAGATGAAACCTACCGTT 42.17 45 47 95 9 0 

GACAAGAACAGATAGTATAC 49.31 35 41 83 0 0 

AGTGGACAAGACCTGCCCGG 49.67 65 47 88 9 0 

ACCAAGCAGATGAAACCTAC 40.52 45 46 103 9 0 

CGTTGACAAGAACAGATAGT 33.91 40 41 85 0 0 

ATACAGTGGACAAACCGTGC 39.52 50 45 74 16 0 

CGGTACCAAGCAGATGAATC 34.60 50 39 88 9 0 
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