
 

1 

 

An FPGA embedded ACCA architecture for high 

resolution target detection 
Ridha Djemal 

Electrical Engineering Department 

College of Engineering, King Saud University 

Box 800 CP 11421 KSA 

rdjemal@ksu.edu.sa 

 

 
Abstract—This paper presents an efficient FPGA-based 

architecture of CFAR target detector for radar system based on 

the automatic censored cell averaging (ACCA) detector based on 

ordered data variability (ODV). The ACCA–ODV detector 

estimates the unknown background level by dynamically 

selecting a suitable set of ranked cells and applying successive 

hypothesis tests. The proposed detector does not require any 

prior information about the non homogenous background 

environment. It uses the variability index statistic as a shape 

parameter to accept or reject the ordered cells under 

investigation. The detection process is achieved on the fly in real-

time where the processing time must be lower than 0.5 µs for 

high resolution detection. The proposed architecture is based on 

the embedded software solution which consists on execution an 

the ANSI-C code of the detector over the Nios-II soft-core 

processor downloaded in the FPGA with the requires hardware 

components, such as on-chip memories, UART and JTAG 

interfaces and Avalon interfaces,  to build the system on chip. 

Using the proposed approach for our embedded target detection 

system, the total delay is close to 0.38 µs for the ACCA-ODV 

algorithm, which satisfy the real-time constraints of 0.5 µs.  

Keywords— Constant False Alarm Rate (CFAR), Target 

Detection, Embedded System, Programmable device FPGA, 

Ordered Data Variability (ODV). 

I.  Introduction 
The received signal in a radar system is computed to extract 

necessary information on the targets related to the object type (target 
or clutter) and the locations of the identified objects. If the echo is 
associated with a clear or empty background, it can be simply 
compared with a fixed threshold and the target is detected whenever 
the signal exceeds this threshold. However, in real cases, the echo is 
accompanied with clutter that varies in time and position, and 
therefore, in the extraction of the target, the threshold should be 
calculated dynamically from the local background noise/clutter power 
and not be a constant. In this respect, adaptive signal processing with 
a variable detection threshold is required to decide if there is a target 
present. The main idea is to define a window of cells around the cell 
under analysis and to determine the clutter information in that 
window to calculate dynamically the actual threshold [1].  

 
Several constant false alarm rate (CFAR) techniques used for 

radar systems have been proposed in the literature, such as the 
application of cell averaging (CA) and ordered statistics (OS) [2,3]. 
For example, the OS-CFAR detector, for which an appropriate 
reference cell is used to estimate the background noise power level, 
has been proposed [4]. The OS-CFAR detector has a small additional 
detection loss over the CA-CFAR detector for homogeneous 

backgrounds but can resolve closely spaced interferences. However, 
it requires a longer processing time than the CA-CFAR detector, and 
in these terms, the CA-CFAR technique is the optimum CFAR 
approach for homogenous environments. 

 
Other well-developed OS algorithms, such as the Greatest-of-

CFAR (GO-CFAR) algorithm and the Smallest-of-CFAR (SO-
CFAR) algorithm [5], the Censored Mean-Level Detector (CMLD) 
[6], and other OS algorithms [7,8], have been studied for different 
scenarios. However, the assumption of a homogenous environment is 
no longer valid when the number of targets changes abruptly. In such 
situations, the performance of the CA-CFAR processor is seriously 
degraded. Various classes of CFAR techniques have been proposed 
to enhance robustness against a non-homogeneous environment for 
different applications [9, 10] according to the background distribution 
but these implementations have been experimental in a software 
environment and not validated for a real-time system.  

 
Although the theory of CFAR radar detection has been well 

established, the hardware implementation for a real-time environment 
is still beyond currently available high-computational signal 
processing operations. Owing to the real-time constraints of target 
detection by a high-resolution radar system, system-on-chip (SoC) 
architecture is an attractive solution for the real-time CFAR 
processor. In SoC architecture, all components of a computer, such as 
the processor, glue logic and memories, are integrated onto a single 
chip and operate in an organized manner.  

 
In this paper, a Nios II processor FPGA-based platform is 

used to implement the Automatic Censored Cell Averaging Ordered 
Data Variability ACCA-ODV CFAR algorithm. This detector should 
be able to operate robustly to detect automatically target cell and 
determine the number of interferences close to the target. The SoC 
architecture of the CFAR detector is implemented on using Altera 
Stratix IV board with an embedded architecture organization based 
on the integration of the Nios-II soft-core processor in VHDL 
language. The Avalon switch fabric is also integrated within the same 
FPGA to interconnect the system-on chip components detailed in 
section IV. The proposed CFAR system is a typical embedded system 
example built in such way to achieve a processing delay of less than 
500 ns, suitable for high-resolution radar applications in a desert 
environment [11]. The rest of this paper is organized as follows. In 
Section 2, the fundamentals of CFAR theory and related research on 
hardware realization for some types of CFAR algorithms are 
described. Section 3 presents the mathematical formulation with 
respect to the ACCA-ODV target detector. The embedded system 
FPGA-based design architecture for the proposed detector is 
explained in Section 4. Section 5 presents the simulation results and 
the realization of the target detection embedded system. In section 6, 
conclusions and future research plans are discussed. 

 International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
 Volume 3 : Issue 1                     [ISSN 2319 – 7498] 

Publication Date : 09 January 2014 
 

mailto:rdjemal@ksu.edu.sa


 

2 

 

II. Related Work 
For a radar system, a detection method is needed to determine 

the power threshold above which any return can be considered as 
coming from a target. If the threshold is too low, then more targets 
are detected, but the number of false alarms is high. Conversely, if 
the threshold is too high, then fewer targets are detected but the 
number of false alarms is low. The adaptive threshold can be used, 
where the threshold level is raised and lowered to maintain a constant 
probability of a false alarm. This is called CFAR detection. 

 
A typical CFAR processor is shown in Fig. 1. The input 

signals are set serially in a shift register. The content of the cells 
surrounding the cell under test (X0) are processed using a CFAR 
processor to obtain the adaptive threshold T. The value of X0 is then 
compared with the threshold to make the decision. The cell under test 
is declared a target if its value exceeds the threshold value. 

 

Fig. 1. Block diagram of a typical CFAR algorithm 

The first and simplest CFAR detector is the CA-CFAR 
detector [3], for which the adaptive threshold is obtained from the 
arithmetic mean of the reference cells. Many CFAR algorithms have 
been recently developed. We can categorize a CFAR algorithm into 
one of three models according to the clutter power distribution and 
the interfering targets. 

 When there is transition in the clutter power distribution, we can 
use, for example, greatest-of-selection logic for the CA-CFAR 
detector (GO-CFAR) [12] to control the increase in the 
probability of a false alarm. If one or more interfering targets are 
present, the GO-CFAR detector performs target detection poorly 
and it is suggested that an SO-CFAR algorithm employing 
smallest-of-selection logic is used instead for the CA-CFAR 
detector [13]. 

 When the clutter background is composed of homogeneous 
white Gaussian noise plus interfering targets, the CMLD can be 
used as a target detector. The CMLD censors target samples and 
estimates the noise level from the remaining noise sample. In 
addition, the trimmed mean-level CFAR (TM-CFAR) detector 
[4] implements trimmed averaging after ordering the samples in 
the window. When the number of interfering targets is not 
known a priori, the generalized CMLD (GCMLD), for which the 
number of interfering targets is determined and their 
corresponding samples are then sampled, can be used as well as 
the OS-CFAR detector, which chooses one ordered sample to 
represent the estimated noise level in the cell under test. If there 
is not only transition in the clutter power distribution but also 
interfering targets, a commonly used technique is the 
generalized two-level CMLD (GTL-CMLD) [14], which uses an 
automatic censoring algorithm of the unwanted samples when 
both interfering targets and extended clutter are present in the 
reference window of the cell under test.  

 The last category deals with non-Gaussian clutter distribution. 
The lognormal distribution, Weibull distribution, gamma 
distribution, and K-distribution have been used to represent the 
envelope-detected non-Gaussian clutter distribution. Works on 
CFAR detection for Weibull clutter have been reported. [15-16] 

 
However, the developments of the theoretical aspects of 

CFAR detection are not followed by hardware implementation. There 
are few attempts considering hardware implementations of CFAR 
processors have been reported. In particular, configurable hardware 
architecture for adaptive processing of noisy signals for target 
detection based on CFAR algorithms has been presented in [16-18]. 
The architecture has been designed to deal with parallel/pipeline 
processing and to be configured for Max, Min, and Cell-Average 
(CA) CFAR algorithms. OS-CFAR was implemented using parallel 
structure in [19]. In [20], CA-CFAR and OS-CFAR are combined 
and implemented in FPGA. In [21], TM-CFAR algorithm has been 
realized using FPGA. However, all these implementation were for 
simple CFAR algorithms and only suitable for Gaussian distribution 
type of clutter. 

 
Alsuwailem et al. [22] implemented an automatic censoring 

CFAR detector called Automatic Censored Cell Averaging (ACCA) 
ODV CFAR. However, the implementation does not consider the real 
time aspects where an offline validation is done without allowing 
interactive interaction with the architecture. Furthermore not standard 
interface is given in order to facilitate the communication with the 
Radar System environment. Winkler et al. [23] used SoC with 
reconfigurable processor inside for an automotive radar sensor. The 
processor is responsible for controlling the custom logic and IO tasks.   

 
In this respect, we propose to implement the ACCA-ODV 

CFAR detector using the embedded system organization integrating 
both hardware and software in the same FPGA and satisfying the 
real-time constraint related to the high resolution of non-homogenous 
environment. 

III. The ACCA-ODV Detection 
Algorithm 

In ACCA-ODV CFAR algorithms, the detection consists of 
two steps: removing the interfering reference cells (censoring step) 
and the actual detection (detection step). Both steps are performed 
dynamically by using a suitable set of ranked cells to estimate the 
unknown background level and set the adaptive thresholds 
accordingly. In a CFAR processor, the radar outputs 

{  are stored in a tapped delay line (Fig 2). The cell 

with the subscript  is the cell under test, where it contains the 

signal which should be detected as a target or not. The last  
surrounding cells are the auxiliary cells used to construct the CFAR 
procedure. In the ODV-CFAR, the  surrounding cells are ranked in 
ascending order according to their magnitudes to yield 

 (1) 
 

The test cell X0 is to be compared with the threshold Tk, to decide 

whether a target is present or not. Selecting 

 
leads to a CFAR processor in Rayleigh clutter. The threshold Tk is 

parameterised by the variable tk. The subscript j is taken to represent 

the largest rank possible, since CFAR loss would increase with the 

decrease in the value of j. In particular, the numerical results obtained 

in [5] show that the appropriate value of j, when detection is 

performed in homogeneous environments, is j = N.  

X(1) . . . X(N/2) X((N/2)+1)    . . . X(N) 

F(X(1), X(2), …, X(N)) 

Guard  cells 

Comparator 

Envelope 

Detector 
Input 

Signal 

Decision 

 

 

 

 International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
 Volume 3 : Issue 1                     [ISSN 2319 – 7498] 

Publication Date : 09 January 2014 
 



 

3 

 

 

 
Fig. 2. Block diagram of the ACCA-ODV CFAR algorithm 

 

However, in the presence of k interfering targets in the reference 

window, the value of j is best selected such that j = N- k. Therefore 

the main objective of the ACCA–ODV censoring algorithms is to 

have the task of determining the best value of k. Once the number of 

interfering targets is determined automatically, the output of the test 

cell X0 is then compared with the adaptive threshold Tk according to 

    (3) 

where the adaptive threshold Tk (or equivalently the parameter tk) is 

selected so that the design Pfa is achieved. Hypothesis H1 denotes the 

presence of a target in the test cell, whereas H0 is the null hypothesis 

(i.e. no target is present). To determine the number of interfering 

targets k, the ODV statistic V0 is first compared with the ODV 

threshold S0, which is selected so that a low probability of false 

censoring Pfc is maintained. The statistic V0 is defined as follows: 

 
 

Where    i) 

And    

 

The parameter p has to be carefully selected to yield a robust 

performance in both homogeneous and non-homogeneous 

environments. Values of p > N/2 have been found to yield a 

reasonable performance [4]. If V0 < S0, the algorithm decides that 

X(N) corresponds to a clutter sample without interference, and it 

terminates. If, on the other hand, V0 > S0, the algorithm decides that 

the sample X(N) is a return echo from an interfering target. In this 

case, X(N) is censored and the algorithm proceeds to compare the 

statistic V1 with the threshold S1 to determine whether X(N - 1) 

corresponds to an interfering target or a clutter sample without 

interference. In this case, we have: 

 

(7) 

At the (k + 1)th step, the ODV statistic Vk is compared with the 

threshold Sk and a decision is made according to the test . 

 
Hypothesis H1 represents the case where X(N- k) and thus the 

subsequent samples X(N -2 k + 1), X(N - k + 2), . . . , X(N) 

correspond to clutter samples with interference, whereas H0 denotes 

the case where X(N - k) is a clutter sample without interference. 

 

The successive tests are repeated as long as the hypothesis H1 is 

declared true. The algorithm stops when the cell under investigation 

is declared homogeneous (i.e. clutter sample only) or, in the extreme 

case, when all the N- p highest cells are tested (i.e. k = N- p). It is 

quite clear from Fig. 2 that the threshold selection is a key element in 

the implementation of the ACCA–ODV algorithm. The threshold 

parameter tk is determined for a design Pfa by [4, 5] 
 

 
 

As of Sk, these thresholds are selected such that a low probability of 

hypothesis test error is achieved in a homogeneous environment. For 

the ACCA–ODV algorithm, this probability is defined, at each value 

of k, as: 

 ek = Prob(Vk > Sk | homogeneous environment) (11) 

 

 The ODV thresholds Sk are selected such that a low Pfc is maintained 

at each step [4]. Hence, the values of Sk are determined by setting 

e0=e1= .... = eN-p-1=design Pfc   (12) 

 

Threshold Values 
 

The threshold selection is a key element in the proposed algorithm. 
These thresholds should be selected in order to reach low probability 
of hypothesis test error in a homogeneous environment. Monte Carlo 
simulation employed to obtain the threshold values with exponential 

probability density function . Table I gives the threshold 

parameters  obtained using ACCA-ODV with different values of 

. 

TABLE I: Threshold parameters for ACCA-ODV  

 

(N,p) Pfc 
 

S0 S1 S2 S3 S4 S5 

(16,12) 

10-2 0.356 0.246 0.199 0.173 - - 

5x10-3 0.389 0.267 0.213 0.183 - - 

10-3 0.456 0.320 0.246 0.206 -  

(24,16) 

10-2 0.332 0.235 0.189 0.162 0.143 0.131 

5x10-3 0.362 0.255 0.204 0.173 0.152 0.138 

10-3 0.422 0.305 0.240 0.200 0.174 0.155 

X(1) . . . X(N/2) X((N/2)+

1) 
   . . . X(N) 

X(1) < X(2) < … <X(N) 

Guard Cells 

X(1) < …  < X(p) < … < X(n-k) < … < 

X(N) 

Censoring Algorithm 

 

Set Value Design of  

Set  

Set  

While  and  

       Select  to satisfy  

      Compute  Vk 

Check Vk<Sk: 

 

       If , set  

       Else  

End 

… 

x 

Background level 

Estimator 

 

Select  to satisfy design 
 

Design   

Comparator 

Envelope 

Detector 
Input 

Signal 

Decision 

  

 

 International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
 Volume 3 : Issue 1                     [ISSN 2319 – 7498] 

Publication Date : 09 January 2014 
 



 

4 

 

IV. Embedded ACCA-ODV based 
CFAR system architecture 

A. Generic hardware architecture for 
Radar system 

  
The overall SoC design consists of five main modules as shown in 

Fig.3: the Nios II processor dedicated to the execution of the ACCA-

ODV CFAR algorithm, on-chip ROM input/ROM interface, 

output/RAM interface and JTAG UART interface. All blocks are 

connected by an Avalon interface. This interface allows our system to 

interact easily with external devices such as external memories or any 

other component capable of integration with the Avalon interface. 

The processor masters all communications between the hardware and 

executes the CFAR program using the MicroC/OS II operating 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. ACCA-ODV Nios II-based embedded System: 

B.  Embedded Design flow 
 

To design the ACCA-ODV System on Chip, we propose to follow a 
typical embedded system design flow as shown in Fig. 4 integrating 
three main steps as: 
 

 Hardware design steps: In this step, the embedded system based 

hardware architecture is defined. It incorporates a fast version of 

Nios-II core processor with on-chip memories and JTAG-UART 

interface interconnected using the Avalon fabric. A MicroC/OS 

real-time operating system is also selected and integrated within 

the Nios-II core processor to execute the ANSI-C software code 

related to the proposed CFAR application. 

  Software design steps: This step consists on the design of a pure 

software architecture using a high-level language (HLL). The 

target detection code is developed with ANSI-C language and is 

running at first on the instruction set simulator (ISS) of the Nios-

II core processor in the NiosII-IDE environment of Aletra. Once 

the code is simulated and checked this code is integrated on the 

FPGA code runs on the Nios-II processor within the FPGA 

using a micro-C operating system and a real-time validation is 

processed.  

 System design step: It consists on the integration of both FPGA-

based hardware architecture and software code within the same 

platform. An adequacy between the system architecture and the 

target techniques is explored by operating many optimizations 

on the algorithm (sorting, look up, threshold computation) as 

well as the system architecture (cache optimization, memory 

organization) in order to meet the high resolution and real-time 

requirements.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Typical HW/SW Design Flow 

V. Experimental Implementation 
and Validation 

 The ACCA-ODV CFAR architecture has been built around an 
FPGA single chip, with bloc diagram architecture similar than the 
one presented in Fig.3 where the architecture is mapped onto an 
embedded system configuration. In this respect, the embedded 
software developed in ANSI-C code is executed over the Nios II core 
processor.  The following table gives the execution time of each 
component of the ACCA-ODV architecture as a pure solution 
embedded into the Stratix IV board. 

TABLE II: Embedded Software Execution Time of ODV module  

ACCA-ODV Modules Delays in µs  

Sorting module 12 

Censoring module 10 

Detection module 4 

Total delay 26 

System Interconnect  Fabric (with arbiter) 

Nios II 

Input ROM 

controller 

JTAG 

UART  

M

  

S

  

S

  

S

  

S

  

S

  

On-Chip 

Data 

Mem 

On-Chip 

Ins. Mem 

On-Chip 

Look-up 

Mem 

S

  Output RAM 

controller 

External 

falsh ROM 

External 

RAM 

H
a

rd
w

a
re

 

S
o

ft
w

a
re

 

ACCA-ODV Sys. 

Integration in Quartus-II 

Tool 

System Integration 

& Run/debug 

Matlab Simulation of 

ACCA-ODV + 

Requirements analysis 

 

ACCA-ODV-based System 

on Chip 

 Definition and generation 

 

System integration in 

Quartus-II Tool 

Software development 

ACCA-ODV ANSI-C code 

Run/debug software 

using ISS in Nios-II IDE 

Executable soft. download 

to NiosII/Stratix IV board 
FPGA design download 

to Statix IV board 

Refine software 

And hardware 

 International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
 Volume 3 : Issue 1                     [ISSN 2319 – 7498] 

Publication Date : 09 January 2014 
 



 

5 

 

According to the computation results, we have found that the 

critical point is located in computing p and p of the censoring 
module to compute the adaptive threshold and a part of the detection 
one. The sorting module represents also a critical task. We decide to 
export two custom instructions to integrate the sorting module and 
the censoring module with a part of the detection. The rest of the 
algorithm is dedicated for the Nios II core processor. After 
integrating the overall architecture including the hardware and the 
software modules, we have simulated the design and evaluated their 
complexity before and after adding the custom instruction. In Table 
III, we presented the complexity of only the Nios II core processor 
downloaded within the FPAG to execute the ACCA-ODV CFAR 

detector. The processing time is decreasing from 26s to 0.46 s 
which is a big delay saving. 

 
TABLE III: Nios II processor resources (pure software solution) 

 Without Custom Inst. 

Comb.LUTs  3368 (2%) 

Logic Reg. 2468(1%) 
On-chip Memory 4547584 (31%) 

 
The FPGA implementation result for SoC with  and 

 shows that the NIOS processor can achieve a maximum 
operating frequency of 250 MHz. After many optimizations the 

processing time to perform a single run is 0.46 s. 

VI. Conclusion 
In this paper, a hardware software implementation of ACCA-

ODV CFAR target detector algorithm is reported. This proposed 
system on chip system has the advantages of being simple, fast, and 
flexible with low development cost. The performance of the 
prototype hardware setup proved the concept of the co-design within 
a reasonable time of design.  We have considered the custom 
instruction approach to export and design the hardware components 
having critical delays.  

The proposed FPGA implementation integrates Nios II c, custom 
logics, on-chip memories, Avalon switch fabric and additional 
interfaces. The proposed architecture allows detection of each cell 

under test within a delay of 0.46 s, below the real-time requirement 

of 0.5 s . The architecure has been synthesized and validated using 
the Stratix IV development Kit (EP4SGX230KF4C2 device). As a 
future work, we have to extent the study for multi-cell target 
detection to yield an interfering target within homogenous and non 
homogenous environment. 

Acknowledgement: This work is supported by the NPST project 
number ELE1730 of the King Saud University. 

References 
[1] M. Barkat, Signal Detection and Estimation. Norwood, MA: Artech 

House, 2005. 

[2] R.S. Johnson H.M. Finn, "Adaptive detection mode with threshold 
control as a function of sampled clutter-level estimates," RCA Review, 
vol. 29, pp. 414-463, Sept. 1968. 

[3] H. Rohling, "Radar CFAR thresholding in clutter and multiple target 
situations," IEEE Trans. Aerospace and Electronics Systems, vol. 19, no. 
4, pp. 608-621, Jul. 1983. 

[4] S.A. Kassam P.P. Gandhi, "Analysis of CFAR processors in 
nonhomogenous background," IEEE Trans. Aerospace and Electronics 
Systems, vol. 24, no. 4, pp. 427-455, July 1988. 

[5] H.A. Meziani and F. Soltani, "Performance analysis of some CFAR 
detectors in homogenous and non-homogenous Pearson-distributed 
clutter," Signal Processing, vol. 86, pp. 2115-2122, April 2006. 

[6] G.M. Dillard J.T. Rickard, "Adaptive detection algorithms for multiple 
target situations," IEEE Trans. Aerospace and Electronics Systems, vol. 
13, no. 4, pp. 383-343, Jul. 1977. 

[7] A. Mezache and F. Soltani, "A novel threshold optimization of ML-
CFAR detector in Weibull clutter using Fuzzy-neural networks," Signal 
Processing , vol. 87, pp. 2100-2110, Feb. 2007. 

[8] M. Barkat T.Larouissi, "Performance Analysis of order-statistic CFAR 
detectors in time diversity systems for partially correlated chi-square 
targets and multiple target situations," Signal Processing, vol. 86, no. 7, 
pp. 1617-1631, July 2006. 

[9] M.A. Khalighi and M. H. Bastani, "Adaptive CFAR processor for 
nonhomogenous environemnt," IEEE Trans. Aerospace and Electronics 
Systems, vol. 36, no. 3, pp. 889-897, Jul. 2000. 

[10] P. Henttu, and M. Juntti H. Saarnisaari, "Iterative multidimensional 
impulse detectors for communications based on the classical diagnostic 
methods," IEEE Trans. Communication, vol. 53, no. 3, pp. 395-398, 
Mar. 2005. 

[11] S. Alshebeili, S.M. Alhumaidi, and A. M. Obied Y.M. Seddiq, "FPGA-
Based Implementation of a CFAR Processor using Batcher's sort and 
LUT arithmetic," in 4th International Design and Test Workshop (IDT), 
Riyadh-KSA, 2009, pp. 1-6. 

[12] J.H. Sawyers V. G. Hansen, "Detectability loss due to greatest of 
selection in a cell-averaging CFAR," IEEE Trans. Aerospace and 
Electronics Systems, vol. 16, pp. 115-118, Jan. 1980. 

[13] M. Weiss, "Analysis od some modified cell-averaging CFAR processors 
in multiple target situations," IEEE Trans. Aerospace and Electronics 
Systems, vol. 15, no. 1, pp. 102-114, Jan. 1982. 

[14] S. D. Himonas, and P. K.Varshney M. Barkat, "CFAR detection for 
multiple target situations," IEE Proceeding, Part F: Radar and Signal 
Processin, vol. 136, no. 5, pp. 193-210 M. Barkat, S. D. Himonas, and P. 
K.Varshney, “CFAR detection for multiple target situations,” IEE 
Proceeding, Part F: Radar and Signal Processing, Oct. vol. 136, no. 5, 
pp. 193–210, Oct. 1989. 

[15] R. Ravid and N. Levanon, "Maximum-likelihood CFAR for Weibull 
background," [16] R. Ravid and N. Levanon, “Maximum-likelihood 
CFAR for Weibull background,” IEE Proceeding, Part F: Radar and 
Signal Processing , vol. 139, no. 3, pp. 256-264, Jun. 1992. 

[16] V. Anastassopoulos and G. Lampropoulos, "Optimal CFAR detection in 
Weibull clutter," [17] V. Anastassopoulos and G. Lampropoulos, 
“Optima IEEE Trans. Aerospace and Electronic System, vol. 31, no. 1, 
pp. 52-64, Jan. 1995. 

[17] C. Torres, and S. Lopez R. Cumplido, "A configurable FPGA-based 
Hardware Architecture for Adaptive Processing of Noisy Signals for 
Target Detection Based on Constant False Alarm Rate (CFAR) 
Algorithms," in Global Signal Processing Conference, Santa Clara CA, 
2004, pp. 214-218. 

[18] M.L.Bencheikh B. Magaz, "An Efficient FPGA Implementation of the 
OS-CFAR Processor," in International Radar Symposium, Wroclaw, 
2008, pp. 1-4. 

[19] R. Cumplido, C. Uribe and F. Del Campo R. Perez, "A versatile 
hardware architecture for a constant false alarm rat processor based on a 
linear insertion sorter," Digital Signal Processing, vol. 20, pp. 1733-
1747, 2010. 

[20] J. K. Ali, and Z. T. Yassen T. R. Saed, "An FPGA-based implementation 
of CA-CFAR processor," Asian Journal of Information Technology, vol. 
6, no. 4, pp. 511-514, 2007. 

[21] A. M. Alsuwailem, S. A. Alshebeili, and M. Alamar, "Design and 
implementation of a configurable real-time FPGA-based TM-CFAR 
processor for radar target detection," Journal of Active and Passive 
Electronic Devices, vol. 3, no. 3-4, pp. 241-256, 2008. 

[22] A. M. Alsuwailem, M.H. Alhowaish, S. A. Alshebeili, and S.M Qasim, 
"Field programmable gate array-based design and realization of 
automatic censored cell averaging constant false alarm rate detector 
based on ordered data variability," IET Circuits, Devices & Systems, 
vol. 3, no. 1, pp. 12-21, Feb. 2009 

[23] J. Detlefsen, U. Siart, J. Buchlert, and M. Wagner V. Winkler, "FPGA-
based signal processing of an automotive radar sensor," in First 
European Radar Conference, Amsterdam, 2004, pp.  

 

 International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
 Volume 3 : Issue 1                     [ISSN 2319 – 7498] 

Publication Date : 09 January 2014 
 


