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Abstract—Grammatical Evolution (GE), which is one of the 

evolutionary computations, aims to find function, program or 

program segment satisfying the design objective. This paper 

describes the improvement of the Grammatical Evolution 

according to Stochastic Schemata Exploiter (GE-SSE) and its 

application to symbolic regression problem. Firstly, GE-SSE is 

compared with original GE in symbolic regression problem. The 

results show that GE-SSE has faster convergence property than 

original GE. Secondly, GE-SSE is applied for the stock price 

prediction as the actual application of the GE-SSE.  
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I.  Introduction 
Grammatical Evolution (GE), which is one of evolutionary 

computations, is designed to find a function or a program or a 
program fragment that satisfies the given design objective [1-
4]. Although the aim of GE is similar to the Genetic 
Programming (GP) [5], their algorithms are very different. In 
GE, the potential solutions (individuals) of the problem are 
defined as the bit-strings like Genetic Algorithm (GA). The 
genotype (bit-string) is translated into the phenotype (function 
or program) according to the translation rule. During GP 
search process, the genetic operators often generate the invalid 
phenotype. In GE, the use of the translation rule can avoid the 
invalid phenotype. Once the genotype is translated into 
phenotype, the fitness is estimated. The population of the 
potential solutions evolves toward better solutions by Simple 
Genetic Algorithm (SGA).  

In this study, instead of the SGA, the Stochastic Schemata 
Exploiter (SSE) is employed for accelerating the convergence 
speed of the GE [6-8]. Stochastic Schemata Exploiter (SSE) 
comes from the Simple Genetic Algorithms (SGA) [9,10]. 
Their algorithms are very different. In SGA, the potential 
solutions (bit-strings) evolve to the optimal one by genetic 
operators such as selection, crossover, and mutation. The SSE 
search process also starts from the population of individuals. 
Sub-populations are defined from the whole population of 
individuals according to the descending order of their fitness. 
The set of common bits is extracted from the individuals in the 
sub-populations, which is named as common schemata. The 
set of uncommon bits in the bit-strings are replaced with 
randomly generated `0's and `1's for generating offspring. SSE 
uses the sub-population definition and the schemata extraction 
instead of selection and crossover employed in SGA.  
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SSE has two interesting features. Firstly, the SSE 
convergence speed is faster than the SGA. Secondly, the 
crossover operation is not necessary in the SSE. Therefore, its 
performance does not depend on the crossover operation 
parameter. The aim of this study is to use SSE algorithm for 
improving the convergence property of the original GE. In the 
present algorithm, the update algorithm of individuals in the 
population is changed from SGA in the original GE to SSE. 
Symbolic regression problem is considered as the numerical 
example in order to discuss the convergence property.  

The remaining part of this paper is organized as follows. 
The present algorithm is explained in section 2 and the results 
are shown in section 3. Finally, the conclusions are 
summarized again in section 4. 

II. Grammatical Evolution with 
Stochastic Schemata Exploiter 

A. Algorithm  
The algorithm of Grammatical Evolution with Stochastic 

Schemata Exploiter (GE-SSE) is summarized as follows.  

1. A translation rule is defined to translate genotype  to 
phenotype.  

2. An initial population is defined with randomly 
generated individuals.  

3. Genotypes are translated to phenotypes according to 
the rule.  

4. Fitness functions of phenotypes are estimated.  

5. Convergence criterion is confirmed.  

6. If the criterion is satisfied, the process is terminated. 
If not so, the process moves to the next step.  

7. The population is updated by Stochastic Schemata 
Exploiter (SSE).  

8. The process moves to step 3.  

In original GE, the population update (Step 7 of the above 
algorithm) is done by Simple Genetic Algorithms (SGA). The 
present algorithm adopts Stochastic Schemata Exploiter (SSE) 
instead of SGA.  

B. Translation from Genotype to 
Phenotype  
The example of the translation rule is shown in Table 1. 

The translation rule (A) denotes that the symbol <expr> can be 
replaced with the symbols <expr><op><expr>, <num> or 
<var>. The symbol <expr> has three potential symbols to be 
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replaced <expr><op><expr>, <num> and <var>.  The symbol 
<op>, <x> and <num> have four, two and only one potential 
symbols, respectively.  

The translation of the symbol <expr> leads to the other 
symbols which can be replaced again. Such translation rule is 
named as the “recursive rule”. The other symbols lead to the 
operators, variables and numbers which cannot be replaced 
any more. Such translation rule is named as the “terminal 
rule”. 

The translation process from genotype to phenotype can be 
summarized as follows.  

1. A genotype is translated to a decimal number every 
 -bits.  

2. A leftmost unused decimal number of the genotype is 
referred to as   .  

3. The leftmost symbol in the character string is  , and 
the number of the candidate symbols for   is   . 

4. The remainder    is calculated from    and     as 
        .   

5. The symbol   is replaced with the   -th candidate 
symbol of the translation rule. 

6. If the symbols exist, the process moves to step 2.  

 

Table 1: BNF syntax in simple example 

No Rule 

(A) <expr> ::= <expr><op><expr>   |   <num>   |   <var> 

(B) <op>    ::=   +   |  -   |  *  | /  

(C) <var>   ::=   x   |  y  

(D) <num> ::=   1  

 

C. Stochastic Schemata Exploiter 
The algorithm of Stochastic Schemata Exploiter (SSE) is 

summarized as follows [5-7]. 

1. Sub-populations are defined according to the 
descending order of the individual fitness.  

2. Common schemata are extracted from the individuals 
in sub-populations.  

3. The extracted schemata are composed of three 
characters; 0, 1 and *. New individuals are defined by 
randomly replacing * by 0 or 1.  

4. The process moves to step 2 unless convergence 
criterion is satisfied.  

(1) Sub-population Definition 

The population   is composed of the individuals 
          , which are numbered according to the descending 
order of their fitness. Therefore, the individual    denotes the 

 -th best individuals in the population  . The symbol   
denotes the sub-population of the population  . When the 
individual    is excluded from  , a new population is 
represented as     . The operator   denotes the union of 
sets.  

When the number of the worst individual in the sub-
population   is as     , the individual       is the worst one in 

the sub-population   and thus, the individual         is worse 

by one rank than the individual      . The following semi-

order relation is held in the sub-population   of the population 
 . 

1. When the individual         is added to a sub-population 

 , the new sub-population is defined as          . The 

average fitness of the sub-population           is worse 

than that of the sub-population  .  

2. When the individual       is replaced with the individual 

       , the new sub-population is defined as (  

     )         . The average fitness of the sub-

population                   is worse than that of the 

sub-population  .  

Sub-populations are defined according to their semi-order 
relation. The best sub-population is composed of the best 
individual    alone, we have a first sub-population  

       .     (1) 

When the individual    is added to the sub-population 
        according to the semi-order relation, we have a 
second sub-population  

          .     (2) 

When the individual    in the sub-population    is replaced 
with the individual    according to the semi-order relation, we 
have a third sub-population  

            (3) 

When the individual    is added to the sub-population 
           according to the semi-order relation, we have a 
fourth sub-population 

             .    (4) 

When the individual    in the sub-population    is replaced 
with the individual    according to the semi-order relation, we 
have  

          .     (5) 

Similarly, sub-populations are defined according to the semi-
order relation and the descending order of the individual 
fitness.  

III. Numerical Examples 

A. Example 1 
Symbolic regression problem is considered as the 

numerical example. The exact function is given as follows.  

                  (6) 
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The set of variable     is given as follows.  

                                   (7) 

The translation rule is shown in Table 2 and the start symbol is 
<expr>.  

 

Table 2: Translation rule (Example 1) 

No Rule 

(A) <expr>  ::=  <expr><op><expr>  |  <var> 

(B) <op>  ::=  +  |  -  |  *  |  / 

(C) <var>  ::=  x  |  <num>  

(D) <num> ::= 1  |  2  | 3  |  4  |  5  |  6  |  7  |  8  |  9 

 

Table 3: Parameters (Example 1) 

Max. generation 1000 

Simulation times 100 

Population size 300 

Chromosome length 800 

Radix conversion bit-length 8 bit 

 

Table 4: Crossover and mutation rates (Example 1) 

GE Crossover rate = 0.6; Mutation rate = 0.075 

SSE Mutation rate = 0.3 

 

 

Figure 1: Convergence history of fitness (Example 1) 

 

In the original GE, the individuals in the population are 
updated by SGA. The roulette selection is adopted and the 
selection probability    of the individual   is given by  

     
    

∑      
 
   

    (8) 

where   is total number of individuals. One-point crossover 
and elitist selection scheme are also used. Simulation 

parameters for GE and GE-SSE are shown in Table 3 and 4. 
Crossover and mutation rates for GE and GE-SSE were 
determined in advance by some numerical tests.  

Figure 1 shows the convergence histories of the best 
individual fitness values in GE and GE-SSE. The figure is 
plotted with generation as horizontal axis and fitness value as 
vertical axis, respectively. This figure shows that GE-SSE 
could find the solution at 400 generation although the original 
GE found the similar one at 800 generation. Therefore, it is 
concluded that the convergence speed of GE-SSE is faster 
than that of GE. 

 

Table 2 : Translation rule (Example 2) 

No. Rule 

(A) <expr> ::= <expr><op><expr> | <var> 

(B) <var> ::= <stock> | <num>  

(C) <op> ::=  +  |  -  |  *  |  /  

(D) <stock> ::=      |      |             |      

(E) <num> ::= 1 |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  | 0 

 

Table 3 : Parameters 

Maximum generation 1000 

Number of trials 100 

Population size 300 

Individual length 800 

Number of elitists 3 

Bit length for radix conversion 8 bit 

Mutation rate 0.1 

 

B. Example 2 
GE-SSE is applied for symbolic regression problem of 

NIKKEI stock average. NIKKEI stock average values from 
October 1st 2010 to September 30th 2011 are taken as the 
training data for the problem. The function is applied for 
prediction of the NIKKEI stock average from October 3rd to 
November 30th, 2011.  

The translation rule is listed in Table 2. The parameters 
    ,     ,     ,      and      denote the stock price one-, 
two-, three-, four- and five-days prefer of the day  . The 
symbol <expr> has two potential symbols; <expr><expr><op> 
and <var>. Similarly, the symbol <var>, <op>, <stock> and 
<num> have two, four, five and ten potential ones. The start 
symbol is <expr>. Parameters are shown in Table 3.  

The fitness function is defined by the least square error of 
the real stock price and the predicted function values as 
follows  
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   .   (9) 

The parameter   is the total number of days for stock price 
prediction. The function    and  ̅  denote the real stock price 
and the predicted price at the day  , respectively.  

The simulations are performed 100 times. The best result 
among 100 simulations gives the following function.   

 ̅           
              

    
 

         

 
 (10) 

The stock price predicted by the above equation is 
compared with the actual stock price in Fig.2. The figure is 
plotted with the date as the horizontal axis and the stock price 
as the vertical axis, respectively.  

 

 

Figure 2: Comparison of stock price fluctuation (Example 2) 

IV. Conclusion 
This paper describes the improvement of the convergence 

property of Grammatical Evolution (GE). While the original 
GE uses Simple Genetic Algorithm (SGA) for updating the 
population, the present algorithm employs Stochastic 
Schemata Exploiter (SSE). Firstly, the algorithm was applied 
for symbolic regression problem. The results showed that the 
convergence speed of GE-SSE is faster than that of the 
original GE. The SSE tends to search the better solution than 
the best solution which has be found ever. Therefore, GE-SSE 
seems to show the faster convergence speed than the original 
GE. Secondly, the present algorithm was applied for stock 
price prediction problem. The result showed that the GE-SSE 
was applicable for this problem and there were some problems 
to be overcome.  
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