
47

Application of Improved Grammatical Evolution to

Stock Price Prediction
 Hideyuki Sugiura, Takao Mizuno, Yukiko Wakita, Eisuke Kita

Abstract—Grammatical Evolution (GE), which is one of the

evolutionary computations, aims to find function, program or

program segment satisfying the design objective. This paper

describes the improvement of the Grammatical Evolution

according to Stochastic Schemata Exploiter (GE-SSE) and its

application to symbolic regression problem. Firstly, GE-SSE is

compared with original GE in symbolic regression problem. The

results show that GE-SSE has faster convergence property than

original GE. Secondly, GE-SSE is applied for the stock price

prediction as the actual application of the GE-SSE.

Keywords—Grammatical Evolution, Stochastic Schemata

Exploiter, Symbolic Regression, Stock Price Prediction.

I. Introduction
Grammatical Evolution (GE), which is one of evolutionary

computations, is designed to find a function or a program or a
program fragment that satisfies the given design objective [1-
4]. Although the aim of GE is similar to the Genetic
Programming (GP) [5], their algorithms are very different. In
GE, the potential solutions (individuals) of the problem are
defined as the bit-strings like Genetic Algorithm (GA). The
genotype (bit-string) is translated into the phenotype (function
or program) according to the translation rule. During GP
search process, the genetic operators often generate the invalid
phenotype. In GE, the use of the translation rule can avoid the
invalid phenotype. Once the genotype is translated into
phenotype, the fitness is estimated. The population of the
potential solutions evolves toward better solutions by Simple
Genetic Algorithm (SGA).

In this study, instead of the SGA, the Stochastic Schemata
Exploiter (SSE) is employed for accelerating the convergence
speed of the GE [6-8]. Stochastic Schemata Exploiter (SSE)
comes from the Simple Genetic Algorithms (SGA) [9,10].
Their algorithms are very different. In SGA, the potential
solutions (bit-strings) evolve to the optimal one by genetic
operators such as selection, crossover, and mutation. The SSE
search process also starts from the population of individuals.
Sub-populations are defined from the whole population of
individuals according to the descending order of their fitness.
The set of common bits is extracted from the individuals in the
sub-populations, which is named as common schemata. The
set of uncommon bits in the bit-strings are replaced with
randomly generated `0's and `1's for generating offspring. SSE
uses the sub-population definition and the schemata extraction
instead of selection and crossover employed in SGA.

Hideyuki Sugiura, Takao Mizuno, Yukiko Wakita, Eisuke Kita

Nagoya University, Graduate School of Information Science

Nagoya, Japan
E-mail: kita@is.nagoya-u.ac.jp

SSE has two interesting features. Firstly, the SSE
convergence speed is faster than the SGA. Secondly, the
crossover operation is not necessary in the SSE. Therefore, its
performance does not depend on the crossover operation
parameter. The aim of this study is to use SSE algorithm for
improving the convergence property of the original GE. In the
present algorithm, the update algorithm of individuals in the
population is changed from SGA in the original GE to SSE.
Symbolic regression problem is considered as the numerical
example in order to discuss the convergence property.

The remaining part of this paper is organized as follows.
The present algorithm is explained in section 2 and the results
are shown in section 3. Finally, the conclusions are
summarized again in section 4.

II. Grammatical Evolution with
Stochastic Schemata Exploiter

A. Algorithm
The algorithm of Grammatical Evolution with Stochastic

Schemata Exploiter (GE-SSE) is summarized as follows.

1. A translation rule is defined to translate genotype to
phenotype.

2. An initial population is defined with randomly
generated individuals.

3. Genotypes are translated to phenotypes according to
the rule.

4. Fitness functions of phenotypes are estimated.

5. Convergence criterion is confirmed.

6. If the criterion is satisfied, the process is terminated.
If not so, the process moves to the next step.

7. The population is updated by Stochastic Schemata
Exploiter (SSE).

8. The process moves to step 3.

In original GE, the population update (Step 7 of the above
algorithm) is done by Simple Genetic Algorithms (SGA). The
present algorithm adopts Stochastic Schemata Exploiter (SSE)
instead of SGA.

B. Translation from Genotype to
Phenotype
The example of the translation rule is shown in Table 1.

The translation rule (A) denotes that the symbol <expr> can be
replaced with the symbols <expr><op><expr>, <num> or
<var>. The symbol <expr> has three potential symbols to be

International Journal of Software Engineering & Research Methodology – IJSERM
Volume 1 : Issue 1

Publication Date : 09 January 2014

48

replaced <expr><op><expr>, <num> and <var>. The symbol
<op>, <x> and <num> have four, two and only one potential
symbols, respectively.

The translation of the symbol <expr> leads to the other
symbols which can be replaced again. Such translation rule is
named as the “recursive rule”. The other symbols lead to the
operators, variables and numbers which cannot be replaced
any more. Such translation rule is named as the “terminal
rule”.

The translation process from genotype to phenotype can be
summarized as follows.

1. A genotype is translated to a decimal number every
 -bits.

2. A leftmost unused decimal number of the genotype is
referred to as .

3. The leftmost symbol in the character string is , and
the number of the candidate symbols for is .

4. The remainder is calculated from and as
 .

5. The symbol is replaced with the -th candidate
symbol of the translation rule.

6. If the symbols exist, the process moves to step 2.

Table 1: BNF syntax in simple example

No Rule

(A) <expr> ::= <expr><op><expr> | <num> | <var>

(B) <op> ::= + | - | * | /

(C) <var> ::= x | y

(D) <num> ::= 1

C. Stochastic Schemata Exploiter
The algorithm of Stochastic Schemata Exploiter (SSE) is

summarized as follows [5-7].

1. Sub-populations are defined according to the
descending order of the individual fitness.

2. Common schemata are extracted from the individuals
in sub-populations.

3. The extracted schemata are composed of three
characters; 0, 1 and *. New individuals are defined by
randomly replacing * by 0 or 1.

4. The process moves to step 2 unless convergence
criterion is satisfied.

(1) Sub-population Definition

The population is composed of the individuals
 , which are numbered according to the descending
order of their fitness. Therefore, the individual denotes the

 -th best individuals in the population . The symbol
denotes the sub-population of the population . When the
individual is excluded from , a new population is
represented as . The operator denotes the union of
sets.

When the number of the worst individual in the sub-
population is as , the individual is the worst one in

the sub-population and thus, the individual is worse

by one rank than the individual . The following semi-

order relation is held in the sub-population of the population
 .

1. When the individual is added to a sub-population

 , the new sub-population is defined as . The

average fitness of the sub-population is worse

than that of the sub-population .

2. When the individual is replaced with the individual

 , the new sub-population is defined as (

) . The average fitness of the sub-

population is worse than that of the

sub-population .

Sub-populations are defined according to their semi-order
relation. The best sub-population is composed of the best
individual alone, we have a first sub-population

 . (1)

When the individual is added to the sub-population
 according to the semi-order relation, we have a
second sub-population

 . (2)

When the individual in the sub-population is replaced
with the individual according to the semi-order relation, we
have a third sub-population

 (3)

When the individual is added to the sub-population
 according to the semi-order relation, we have a
fourth sub-population

 . (4)

When the individual in the sub-population is replaced
with the individual according to the semi-order relation, we
have

 . (5)

Similarly, sub-populations are defined according to the semi-
order relation and the descending order of the individual
fitness.

III. Numerical Examples

A. Example 1
Symbolic regression problem is considered as the

numerical example. The exact function is given as follows.

 (6)

International Journal of Software Engineering & Research Methodology – IJSERM
Volume 1 : Issue 1

Publication Date : 09 January 2014

49

The set of variable is given as follows.

 (7)

The translation rule is shown in Table 2 and the start symbol is
<expr>.

Table 2: Translation rule (Example 1)

No Rule

(A) <expr> ::= <expr><op><expr> | <var>

(B) <op> ::= + | - | * | /

(C) <var> ::= x | <num>

(D) <num> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Table 3: Parameters (Example 1)

Max. generation 1000

Simulation times 100

Population size 300

Chromosome length 800

Radix conversion bit-length 8 bit

Table 4: Crossover and mutation rates (Example 1)

GE Crossover rate = 0.6; Mutation rate = 0.075

SSE Mutation rate = 0.3

Figure 1: Convergence history of fitness (Example 1)

In the original GE, the individuals in the population are
updated by SGA. The roulette selection is adopted and the
selection probability of the individual is given by

∑

 (8)

where is total number of individuals. One-point crossover
and elitist selection scheme are also used. Simulation

parameters for GE and GE-SSE are shown in Table 3 and 4.
Crossover and mutation rates for GE and GE-SSE were
determined in advance by some numerical tests.

Figure 1 shows the convergence histories of the best
individual fitness values in GE and GE-SSE. The figure is
plotted with generation as horizontal axis and fitness value as
vertical axis, respectively. This figure shows that GE-SSE
could find the solution at 400 generation although the original
GE found the similar one at 800 generation. Therefore, it is
concluded that the convergence speed of GE-SSE is faster
than that of GE.

Table 2 : Translation rule (Example 2)

No. Rule

(A) <expr> ::= <expr><op><expr> | <var>

(B) <var> ::= <stock> | <num>

(C) <op> ::= + | - | * | /

(D) <stock> ::= | | |

(E) <num> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

Table 3 : Parameters

Maximum generation 1000

Number of trials 100

Population size 300

Individual length 800

Number of elitists 3

Bit length for radix conversion 8 bit

Mutation rate 0.1

B. Example 2
GE-SSE is applied for symbolic regression problem of

NIKKEI stock average. NIKKEI stock average values from
October 1st 2010 to September 30th 2011 are taken as the
training data for the problem. The function is applied for
prediction of the NIKKEI stock average from October 3rd to
November 30th, 2011.

The translation rule is listed in Table 2. The parameters
 , , , and denote the stock price one-,
two-, three-, four- and five-days prefer of the day . The
symbol <expr> has two potential symbols; <expr><expr><op>
and <var>. Similarly, the symbol <var>, <op>, <stock> and
<num> have two, four, five and ten potential ones. The start
symbol is <expr>. Parameters are shown in Table 3.

The fitness function is defined by the least square error of
the real stock price and the predicted function values as
follows

International Journal of Software Engineering & Research Methodology – IJSERM
Volume 1 : Issue 1

Publication Date : 09 January 2014

50

∑ √ ̅

 . (9)

The parameter is the total number of days for stock price
prediction. The function and ̅ denote the real stock price
and the predicted price at the day , respectively.

The simulations are performed 100 times. The best result
among 100 simulations gives the following function.

 ̅

 (10)

The stock price predicted by the above equation is
compared with the actual stock price in Fig.2. The figure is
plotted with the date as the horizontal axis and the stock price
as the vertical axis, respectively.

Figure 2: Comparison of stock price fluctuation (Example 2)

IV. Conclusion
This paper describes the improvement of the convergence

property of Grammatical Evolution (GE). While the original
GE uses Simple Genetic Algorithm (SGA) for updating the
population, the present algorithm employs Stochastic
Schemata Exploiter (SSE). Firstly, the algorithm was applied
for symbolic regression problem. The results showed that the
convergence speed of GE-SSE is faster than that of the
original GE. The SSE tends to search the better solution than
the best solution which has be found ever. Therefore, GE-SSE
seems to show the faster convergence speed than the original
GE. Secondly, the present algorithm was applied for stock
price prediction problem. The result showed that the GE-SSE
was applicable for this problem and there were some problems
to be overcome.

References

[1] C. Ryan, J. J. Collins, and M. O'Neill. Grammatical evolution: Evolving

programs for an arbitrary language. In Proceedings of 1st European
Workshop on Genetic Programming, 83-95. Springer-Verlag, 1998.

[2] C. Ryan and M. O'Neill. Crossover in grammatical evolution: A smooth
operator? In Proceedings of the European Conference on Genetic
Programming, 149-162. Springer-Verlag, 2000.

[3] M. O'Neill and C. Ryan. Grammatical evolution. IEEE Transactions on
Evolutionary Computation, 5(4):349 -358, 2001.

[4] C. Ryan and M. O'Neill. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Springer-Verlag,
2003.

[5] J. R. Koza, Genetic Programming II, The MIT Press, 1994.

[6] N. A. Aizawa. Evolving SSE: A stochastic schemata explointer. In Proc.
1st IEE Conference on Evolutionay Computation, 525-529. IEEE, 1994.

[7] T. Maruyama and E. Kita. Estimation and extension of stochastic
schemata exploiter. In Data Mining, Text Mining and their Business
Applications (Proceedings of Data Mining 2005), 45-54, 2005.

[8] T. Maruyama and E. Kita. Evaluation of extended stochastic schemata
exploiter. In Computer Aided Optimum Design in Engineering X
(Proceedings of OPTI2007, USA), 45-54, 2007.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, 1 edition, 1975.

[10] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley, 1 edition, 1989.

International Journal of Software Engineering & Research Methodology – IJSERM
Volume 1 : Issue 1

Publication Date : 09 January 2014

