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A new BMI Based Method for Wheelchair Robot 

Navigation 
 [Marsel Mano, Zulkifli Mohamed, Mitsuki Kitani and Genci Capi] 

 
Abstract— Recent research has shown that Brain Machine In-

terface (BMI) can be used to assist disable people in navigating a 

robotic wheelchair by using voluntary mental intentions. BMI 

based navigation is a very challenging task. In this paper we pre-

sent a novel adaptive method to improve BMI based robotic wheel-

chair navigation. The robot is controlled by an adaptive navigation 

platform that provides the user with scalable navigation assistance. 

The platform is able to detect and avoid collisions by using a laser 

range finder sensor. Furthermore, by using computer vision it can 

read assistive information for visually impaired people (tactile pav-

ing) on the floor and autonomously navigate the robot following 

tactile paving directions. Based on user intentions and environment 

context, the robot navigation adaptively changes between assisted 

and unassisted mode. Experimental results show that with the assis-

tance of the adaptive navigation platform the robot navigation im-

proves significantly. Furthermore, the user’s mental focus is re-

duced and BMI classification accuracy is improved as a conse-

quence. 

Keywords—Brain machine interface, rehabilitation, robot 

navigation 

I. Introduction 
Brain Machine Interface (BMI) has attracted a great deal of 

research attention. BMI systems enable humans to communi-
cate with machines by using their brain activity, generally 
measured by Electro Encephalography (EEG) [1]. Non-
invasive BMI generally consists of EEG signals recorded by 
electrodes placed on the human scalp. Depending on the rec-
orded signals and the brain activity, different methods to es-
tablish a non-invasive BMI communication channel exist [2]. 
A commonly used communication channel is based on the 
detection of event related synchronization/de-synchronization 
of brain‟s motor rhythms, generated while performing motor 
imagery of limb movements. In this method, the subject vol-
untarily performs motor imagery mental tasks, which are later 
classified and send to a computer or a machine. 

Its unique ability to communicate with machines only by 
brain signals opens a very wide area of applications for BMI. 
Recently, different research teams are focused on combining 
BMI capabilities with assistive technologies, to provide solu-
tions that can benefit patients with motor disability, when no 
other means are possible. A detailed review of BMI applica-
tions for improvement of assistive technology is shown in [3]. 
BMI usage to support human‟s motor disability is a very im-
portant application.  
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There are two BMI aspects that make the task of control-
ling a wheelchair very challenging. First, it is the low-bitrate 
nature of the communication channel. BMI can efficiently 
classify only up to three or four mental tasks, which limits the 
user‟s available actions and affects directly the control per-
formance. Second, the brain signals change from one state of a 
human to another and from human to human. This makes gen-
eralized models inefficient for mental task classification which 
directly affects performance. 

These aspects have been previously investigated in BMI 
based control of either real [4, 5] or simulated [2] robots. In 
order to deal with the individuality and the dynamic nature of 
brain signals, subject‟s specific predictive models are com-
monly acquired prior to BMI operation. Furthermore, during 
BMI operation the user is asked to repeat the same exact men-
tal task many times, which leads to a high mental workload 
and makes the whole navigation experience tiring.  

A very useful application is the combination of BMI with 
intelligent robotic wheelchairs. The shared control or shared 
autonomy approach [4] is proposed as an effective way to deal 
with the low bitrate nature of BMI. In this approach, the robot-
ic wheelchair is equipped with different assistive modules to 
complement BMI and assist control, based on robot intelli-
gence and environment situation. This has shown to improve 
the navigation experience, but the user‟s mental workload is 
still very high since continuous focus is needed to steer the 
robot. Furthermore, modules used to assist navigation require 
specific prior information (e.g. the goal location for orientation 
recovery module). The semi-autonomous strategy introduced 
in [4], reduces user‟s mental workload, by autonomously nav-
igating the robot, and by requiring user involvement for simple 
yes or no decisions. This method allows the user to relax and 
get involved only when a navigation choice has to be done, but 
the user here doesn‟t have full control on navigation when he 
wants it. Furthermore, prior to navigation the robotic wheel-
chair has to be trained in the same environment, which makes 
it closely environment dependent. 

In this paper, the BMI based control of a robotic wheel-
chair is considered. We propose a novel adaptive navigation 
platform (ANP) for the BMI based robotic wheelchair naviga-
tion scenario. The ANP uses tactile paving for visually im-
paired people as assistive information to autonomously navi-
gate the robot. It reduces user‟s mental workload by switching 
to autonomous navigation based on user preference. ANP has 
a modular architecture that allows it to be flexible and scalable 
according to environment and navigation scenarios. 

Experimental results show that when robot navigates using 
the ANP modules and the assistive information, the number of 
required mental tasks, the navigation time and the number of 
collisions per trial, are reduced significantly. Furthermore, no 
prior environment training or environment information (i.e. 
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goal position, layout map, etc.) are used by ANP during robot 
navigation. 

II. BMI 
The EEG signals were recorded on scalp using 15 EEG 

electrodes mounted on an electrode cap (F7, F3, Fz, F4, F8, 
T3, C3, Cz, C4, T4, T5, P3, Pz, P4 and T6) positioned as 
shown on Fig. 1, with ear average reference. The electrodes 
are connected to the Mitsar-EEG 201 electrode box/amplifier, 
and collected at 250Hz on PC. 

During robot navigation, an online predictive module 
(OPM) was used to filter, extract features and classify the 
EEG signals. The OPM was built from an offline recording 
session. During offline sessions, three cues, representing three 
different mental tasks (left hand, right hand and foot), were 
shown on the computer screen. The user was asked to perform 
the mental task on the cue for 3s. In total, 120 trials (40 per 
task) were taken offline. The BMI paradigm used to build the 
classifier is as follows: 

1. Epochs were extracted on the 0.5-3s window after each cue.  

2. Spatio-temporal filters were optimized for feature extraction 
with spectrally weighted common spatial pattern CSP method 
[6-8]. 

3. Features extracted from the EEG recordings were used to 
build a classifier based on linear discriminant analysis. 

The classification is in the form of probability distribution 
over three tasks, thus the output is defined by the class with 
the highest probability and can take one of the following val-
ues: left, right, forward (foot) and uncertain. A threshold 
probability (0.48) is established to define the output. If this 
threshold value is not achieved by any of the classes, classifi-
cation is labeled „uncertain’. 

III. Robotic wheelchair navigation 
The diagram of the system (Fig. 1(b)) has two parts: 1) the 

robot, that includes the wheelchair equipped with AC motors, 
laser range finder (LRF) sensor, camera and the user with the 
EEG acquisition device, 2) the adaptive navigation platform 
(ANP), which integrates navigation modules and is responsi-
ble for user–robot interaction. 

A. Navigation Modules 
We have created three modules to facilitate the robot navi-

gation: 

a) The unassisted module (DCM) is used to navigate the robot 
in a basic turn-by-turn style. It can turn the robot left, right or 
follow straight ahead with a constant speed of 0.5m/s.  

b) The collision detection module (CDM) uses LRF data to 
avoid collisions. The target sensor distance is set to 0.5m. The 
measuring area is virtually divided in three subareas: left, for-
ward and right subarea. When an obstacle is detected in any of 
the subareas the robot turns in the opposite direction to avoid 
it. 

c) The autonomous navigation module (ANM) is used to 
navigate the robot autonomously, based on the assistive in-
formation found on the floor. The assistive information con-
sists of existing tactile paving used for visually impaired peo-
ple (Fig. 2). The assistive information is classified into assis-
tive lines and decision points. Decision points are called areas 
where tactile lines cross each-other, in front elevators or doors, 
etc. The ANM uses the tactile lines to navigate the robot au-
tonomously. Any time a decision point is detected; the robot 
stops and allows the ANP to ask the user for the next action. 

 

(a) 

 

(b) 

Figure 1.  (a) BMI based robotic wheelchair system. (b) System diagram. 

    
                    (a)                                                    (b) 

Figure 2.  Tactile paving used as assistive information: (a) straight line (b) 

cross section. 
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B. Adaptive navigation platform 
The role of ANP is to adapt navigation based on the envi-

ronment context in order to reduce the user‟s mental workload, 
eliminate collisions and facilitate robot navigation experience. 
The ANP integrates the user‟s mental task predictions with the 
robot sensing information to navigate the robot. A graphical 
user interface and popup windows are used to send inquiries to 
the user. 

In our experiment navigation is done in two different 
modes:  

1) Unassisted mode, where the user navigates the robot turn-
by-turn using BMI. The user fully controls the robot during 
navigation. Every mental task translates into a robot moving 
direction change following Table 1. 

2) Assisted control mode, where the autonomous navigation 
module navigates the robot following assistive information. 
When a decision point is detected the mental task prediction 
translates into a direction change following Table 1. 

In both modes, the collision detection module is available 
and has the highest priority. The ANP uses the graphical user 
interface and popup windows to ask the user to: 1) activate 
ANM in the beginning of navigation, 2) select navigation 
mode and 3) select next direction. 

Changing from unassisted to assisted mode can be done 
only when assistive information is available. While in unas-
sisted mode, if a tactile line is detected, the user is asked to 
switch mode. If declined, the navigation will continue in unas-
sisted mode. Otherwise, navigation will change to assisted 
mode and the robot will follow the assistive information. 
Mode selection is done using only mental tasks; usually left 
hand or foot means “yes” and right hand or uncertain means 
“no”; they are decided by the user. 

Changing from assisted to unassisted mode can be done 
when a decision point is detected; the user is asked to switch 
between modes. When the line is lost (i.e. line is covered or is 
not available anymore) or an obstacle is detected during au-
tonomous navigation, the navigation will immediately switch 
to unassisted mode without asking the user.  

IV. Experiments 
The experimental environment (Fig. 3) is an office building 
with assistive information for visually impaired people. Dur-
ing the experiments all objects were static in the environment. 
Anyway, if the robot encounters a moving object or human the 
collision detection module treats it as a routine collision detec-
tion scenario. 

TABLE I.  ROBOT ORIENTATION CHANGE BASED ON OPM OUTPUT 

OPM output 
Robot Orientation Change 

Unassisted control Assisted Control 

left a follow left line 

right  follow right line 

foot /uncertain  follow line ahead 

a. is the robot direction                

 
Figure 3.  Experimental environment. 

First, the subject used a pushbutton interface (instead of 
BMI) to navigate the robot (around 10 min) in order to famil-
iarize with the wheelchair navigation. The task is to navigate 
the robot from start to the goal (Fig. 3). Sessions are approxi-
mately two hours, including cap installation, electrode imped-
ance correction and navigation trials. Longer sessions cause 
fatigue and the subject‟s focus declines; headache may occur 
due to pressure on scalp caused by electrodes. 

In order to evaluate the adaptive navigation platform we 
conducted the same number of assisted and unassisted experi-
mental trials in each session. At the beginning of each trial the 
subject was able to select assistance from ANP by using BMI. 
The trials‟ sequence was evenly distributed over the three ses-
sions with random variations of control modes. 

V. Results 

A. BMI 
For every pair of mental tasks spatial-temporal patterns 

(filters) corresponding to the three biggest/smallest eigenval-
ues were optimized (Fig. 4) and linear classifier was trained 
with filtered signals. Pattern optimization and classifier train-
ing were done simultaneously. 

 
Figure 4.  Spatial patterns (CSP) and their corresponding frequency filters. 
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The mean BMI online classification accuracy results are 
shown on Fig. 5. The BMI accuracy during assisted navigation 
trials is higher compared to unassisted navigation trials. Alt-
hough there is no direct correlation between BMI classifica-
tion algorithm and ANP, the results show improved classifica-
tion in assisted navigation. The mental tasks performed during 
assisted navigation are less than those performed in unassisted 
navigation mode and the user can relax longer between mental 
tasks in assisted navigation which results in improved BMI 
accuracy. 

B. Navigation 
The camera input is processed online to extract assistive in-
formation (Fig. 6). The online navigation results are summa-
rized in Table 2. Each subject performed 18 trails, 9 assisted 
and 9 unassisted trials. The navigation performance metrics 
are: 1) the number of mental tasks or BMI predictions, 2) the 
navigation time, 3) the number of collisions detected. 

In assisted mode, all three performance metrics improve 
(Table 2). The average number of mental tasks is reduced by 
more than 34%, the navigation time decreased by more than 
14% and the number of collisions was reduced by more than 
77%. This shows that ANP with assistive information im-
proves the navigation quality significantly by keeping the ro-
bot on the best route and avoiding collisions. 

 
Figure 5.  Mean BMI accuracy over sessions in assisted/unassisted mode. 

  
(a) 

  
(b) 

Figure 6.  Assistive information extraction: a) tactile paving line, b) decision 

point. 

Fig. 7 (a) shows the robot navigation route in a trial con-
ducted in assisted mode. Here navigation started in unassisted 
mode and after the first mental task the camera detected the 
tactile paving. The subject was asked to switch mode and as-
sisted mode was selected. In total there are two mental tasks 
(double MI task) at the same place. At the first decision point, 
the robot stopped and the subject was asked again to switch 
control mode. Assisted control was selected again. Immediate-
ly after, the movement direction was asked and forward was 
selected (double MI task again). Following navigation accord-
ing to the dotted line, the robot arrived at the finish line. 

 
(a) 

 
(b) 

Figure 7.  A navigation trial conducted in a) assisted mode b) unassisted 

mode. 

TABLE II.  ROBOT NAVIGATION RESULTS 

Mode Sessions 

Mental  

predictions 

Detected 

collisions 
Time 

mean std mean std mean std 

U
n

a
ss

is
te

d
 1 31.4 7.0 16.0 5.1 298.2 61.9 

2 30.4 3.0 9.6 3.3 262.6 29.4 

3 17.4 3.3 5.5 2.1 157.8 24.9 

Avg. 26.4 4.4 10.4 3.5 239.6 38.7 

A
ss

is
te

d
 1 22.5 4.1 4.7 0.0 256.7 56.9 

2 17.8 1.9 1.8 0.5 212.6 23.9 

3 11.3 0.9 0.6 0.9 148.2 18.6 

Avg. 17.2 2.3 2.4 0.5 205.8 33.2 
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Fig. 7 (b) shows the robot navigation route in a trial con-
ducted only in not assisted mode.  In this trial we have only 
one mental task at a location since the user was never asked to 
switch mode. During this trial a collision was detected and 
later avoided by the collision detection module. 

VI. Conclusions 
The paper proposed an adaptive platform for the BMI nav-

igation of a robotic wheelchair. The advantages of the pro-
posed platform were proved by its application in experimental 
trials. We found that by using the ANP, the number of mental 
tasks, the number of collisions and the navigation time im-
proved significantly. Furthermore, the BMI classification ac-
curacy was improved in assisted navigation. In addition the 
navigation performance improves considerably when the users 
gain experience. The navigation assistance used in our method 
is not restrictive because the subject is able to reject it and 
directly control the robot. In our approach the assistive infor-
mation helps to autonomously navigate the robot without any 
prior training. 
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