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A Robust Approach for Construction of
Irregular LDPC Codes

Rakesh Sharma and Ashish Goswami

Abstract—The future communication systems aim at ef-
fective error control coding methods with effective error
performance and considerable code rates. LDPC codes are
again gaining popularity in future communication systems
due to ease in encoding design, effective BER and accept-
able code rate. This paper presents a new method for con-
structing an irregular LDPC codes from low column weight
LDPC codes. It is discussed that the proposed method has
simple encoding process and less memory requirements. It
has been shown that proposed method improves BER per-
formance on AWGN channel by approx. 1 dB per extension
level with only slight reduction in code rate.

Index Terms—LDPC Codes, Irregular LDPC Codes, Col-
umn Weight Code Rate, Parity Check Matrix.

I. Introduction

ORIGNALLY introduced by Gallager in his doctoral
thesis [1], and rediscovered by Mackay and Neal [2],

there has been renewed interest in LDPC codes because
their bit error rate performance approaches asymptotically
the Shannon limit [3], [4]. Much research is devoted to
characterizing the performance of LDPC codes and design-
ing codes with good BER performance. LDPC codes are
said to be regular if its column and row weights are con-
stant throughout the columns and rows respectively oth-
erwise it is said to be irregular. The irregular codes out-
perform the regular ones. Some of the methods for gen-
erating regular and irregular LDPC codes are discussed in
[7], [8]. The performance of the LDPC codes depend on
the column weight wc of its parity check matrix. The large
column weight codes show better performance in terms of
BER. The codes designed for higher column weights wc ≥ 3
have complex designs and hard to implement. On the other
side, the codes designed for column weight wc = 2 are less
complex to implement. These type of codes can be directly
constructed from Regular Graphs [5], [6]. This type of con-
struction is given by Malema [9]. The incidence matrix of
the graphs can be used as the parity check matrix for the
LDPC Codes. These type of codes have an advantage of
high girth but simultaneously having a limitation of fixed
column weight 2.

In this paper, a construction method has been proposed
to design an irregular LDPC codes by increasing the col-
umn weight of the parity check matrix and its concatena-
tion with an Identity matrix. The proposed construction
also simplify the encoder design and requires less memory
for encoding. We have analyzed the performance of the

Rakesh Sharma is with the department of Electronics and Commu-
nication Enggineering, National Institute of Technology, Hamirpur,
INDIA, email: goswami.ashish@rediffmail.com

Ashish Goswami is with the department of Electronics and Com-
munication Enggineering, National Institute of Technology, Hamir-
pur, INDIA, email: goswami.ashish@rediffmail.com

extended LDPC codes on AWGN channel. The paper is
divided into five sections. The introduction is given in sec-
tion I, the proposed construction method is described in
section II. Encoding simplicity and Performance analysis
is discussed in III and IV sections respectively. Section V
concludes the paper followed by References.

II. The Construction Method

A. Construction Method

The proposed construction method is explained in fol-
lowing steps,

1. Consider C0, the incidence matrix of a graph G (e.g
a (k, g)-Cage) or the Regular Matrix having column
weight 2. Let the row weight and dimension of C0 be
k and m×n respectively. Now take a Zero Matrix O0

of same size as C0 i.e. having dimension m× n and
an Identity Matrix I0 of dimension n×n same as the
number of columns in C0. Now, arrange the matrices
C0, O0 and I0 as shown below,

C1 =


C0 O0 · · · O0

O0 C0 · · · O0

...
...

. . .
...

O0 O0 · · · C0

I0 I0 · · · I0

 (1)

The obtained C1 matrix should have the dimensions
(mk+n)× (nk). The row weight of the obtained ma-
trix remains k, same as in C0 while column weight gets
increased by 1. It can be called as Level-1 extension.

2. Similarly the parity check matrix C1 can be extended
further to Level-2 extended matrix C2 by replacing
C0,O0 & I0 with C1,O1 & I1 respectively. Higher level
extension can be carried out in the similar manner.
The parity check matrix Cs+1 at (s+ 1)th-extended
Level is given by,

Cs+1 =


Cs Os · · · Os

Os Cs · · · Os

...
...

. . .
...

Os Os · · · Cs

Is Is · · · Is

 (2)

The column weight of the obtained parity check ma-
trix has been increased by the number of levels ex-
tended while the row weight remained same. We
should limit the extension level up to a value less than
the row weight. Now this obtained parity check ma-
trix Cs+1 can be used for generating LDPC codes.
The code rate for the above extension code is r =
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nc−rank(Cs+1)
nc

, where nc is the number of columns. On
simulating we found no considerable improvement in
BER performance when we extended the LDPC codes
beyond column weight 3. Another issue regarding the
above codes is with its encoding time, since the par-
ity check matrix contains dependent rows which is to
be eliminated at the time of encoding therefore takes
longer time for encoding.

3. To avoid the above issues, we modified the matrix
by concatenating it with an Identity Matrix of a size
t equal to number of rows of Cs+1. The final parity
check matrix H is given as,

H =
[

Cs+1 It
]

(3)

This type of modification directly converts the matrix
into systematic form and the generator matrix can
be obtained directly, hence takes less time for encod-
ing. This modification also converts the regular LDPC
code into irregular one.

B. Code Rate

The code rate rs+1 at (s+ 1)th level for the proposed
LDPC Codes obtained from the above parity check matrix
is (the proof is given in Appendix),

rs+1 =
nk

(m+ n)k + (s+ 1)n
(4)

III. Simple Encoding

Since the designed codes are the higher column weight
extension of the low column weight LDPC codes, therefore
the encoding of these codes are less complex than their
higher column weight counterparts. To encode we need a
generator matrix for the extended H matrix. For simplicity
only encoder implementation of Level 1 extended codes are
discussed. The Generator Matrix of the Level 1 extended
code parity check matrix can be given by

G1 =

 Ig

C ′
0 O′

0 · · · O′
0 I0

O′
0 C ′

0 · · · O′
0 I0

...
...

. . .
...

...
O′

0 O′
0 · · · C ′

0 I0

 (5)

where Ig is the identity matrix. The size of the matrix
is nk× (m+n+1)k.
Let x be the message vector then the codeword y can

be given by y =G1x. The length of the message vector x
should be nk. The main advantage of the method is that
we don’t require to save the whole G1 matrix for encoding
process but only C0 matrix need to be saved in the memory.
Hence very less memory is required in the encoding process.
To calculate y the steps are as follows:

1. First, we partition the vector x in to k parts as
[x0 x1 . . . xk−1], each xi, i = 0, . . . , k − 1 is a vec-
tor of n bits.

2. Secondly calculate

yi = xiC
′
0 ∀ i = 0, . . . , k − 1 (6)

and

w = x0 + x1 + . . .+ xk−1 (7)

3. Finally, the codeword y is formed by the concatena-
tion of the above vectors x, yi, w as

y = [x y0 y1 . . . yk−1 w]

Hence we see that the encoding is simple and requires
less memory since only C0 matrix needs to be saved. For
higher level of extension also only C0 matrix is required
to be saved and the codewords are easily constructed with
simple methods.

IV. Performance Analysis And The Required
Trade-Offs

We have simulated the constructions based on different
codes available in the literature [11], [12] for analyzing the
BER performance on AWGN channel. All the simulations
are performed in MATLAB. The arbitrary message is en-
coded with the above obtained method, BPSK modulated
and then passed through the AWGN channel. The received
waveform was demodulated and decoded by Logarithmic
Sum-Product Algorithm [10] with maximum number of 20
iterations and a hard decision at the end. The process was
repeated for certain range of SNR and averaged to large
number of simulations. Fig. 1 shows BER performance
of four different typical LDPC codes taken from literature
[11], [12].

From Fig. 1, it is clear that the BER performance of
the LDPC codes get improved on extension. For the un-
extended LDPC code based on Hoffman-singleton graph
[11], BER of 10−4 can be achieved for 4 dB Eb/N0. The
same can be achieved for approx. 2.7 dB on level-1 ex-
tension and approx. 1.5 dB on level-2 extension. Hence it
provides approx. 1 dB improvement per extension level.
Similarly, a typical Gallager code and High rate Gallager
code [12] also shows approx. 1 dB improvement per ex-
tension level. In the case of unextended typical Gallager
code [12], BER of 10−5 can be achieved for 4 dB Eb/N0.
The same can be achieved for approx. 2.4 dB in level-1
and approx. 1.4 dB in level-2 extension. The unextended
high rate Gallager code [12] achieves the BER of 10−5 for
approx. 3.7 dB Eb/N0 and approx. 2.7 dB Eb/N0 for
level-1 extension. A typical LDPC code generated from
Progressive Edge Growth [12] shows 1/2 dB improvement
per extension. The BER of 10−5 can be achieved for ap-
prox. 3.3 dB, 2.5 dB & 1.8 dB Eb/N0 for unextended,
level-1 and level-2 extension respectively.

Hence, we see that on increasing extension levels, the
BER performance got improved. We limited our extension
level less than or equal to the row weight of the parity check
matrix of unextended code. We can see from eq.(4) that
on increasing the number of levels, the code rate reduces,
which is an another important parameter in the data trans-
mission. The code rates for LDPC Codes generated from
different techniques as well as its extended levels are given
in Table I. Hence, we have to take a trade-off between the
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Fig. 1. Simulation results showing BER Performance comparison of original codes with its extended ones.

TABLE I

Code Rates at different extended levels of LDPC Codes

LDPC code based on ↓ Unextended Level-1 Ext. Level-2 Ext.

Hoffman-singleton graph [11] (k = 7) 0.78 0.7 0.64

Gallager code [12] (k = 6) 0.67 0.6 0.54

High rate Gallager code [12] (k = 13) 0.81 0.76 0.72

Progressive Edge Growth [12] (k = 6) 0.67 0.6 0.54
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BER performance and the code rate of the designed LDPC
code.

V. Conclusion

The construction of irregular LDPC codes have complex
design while that of column weight 2 regular LDPC codes
have simpler design and are easy to implement. The pro-
posed extension method converts the low column weight
regular LDPC codes into an irregular one, which not only
improves the BER performance but also have simple en-
coding and require less memory space. On simulation of
typical codes [11], [12] and their extensions, we have found
approx. 1 dB improvement in their BER performance with
only slight reduction in their code rates.

Appendix

[Proof of Eq. 4]
The code rate r for the LDPC Codes obtained from the

parity check matrix given by Eq (3) at (s+ 1)th-Level is
given by

rs+1 =
N

(s+1)
c

N
(s+1)
r +N

(s+1)
c

(8)

where, N
(s+1)
c is the number of columns in Cs+1 & N

(s+1)
r

is the number of rows in Cs+1.

Let C0 matrix has size m×n i.e, N
(0)
r =m & N

(0)
c = n.

Now at (s+1)th-Level, the number of rows and columns
of Cs+1 are given by

N (s+1)
r = kN (s)

r +N (s)
c (9a)

N (s+1)
c = kN (s)

c (9b)

or

N (s+1)
r = ks+1m+ ksn(s+1) (10a)

N (s+1)
c = ks+1n (10b)

Substituting values of Eq. (10) in Eq. (8), we get

rs+1 =
ks+1n

ks+1m+ ksn(s+ 1) + ks+1n
(11)

or

rs+1 =
nk

(m+ n)k + (s+ 1)n
(12)

Hence shown.
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