

82

Analyzing Quadtree Partitions with Different

Thresholds on Various Type of Images in Fractal

Compression
 [Jeet Kumar and Manish Kumar]

Abstract—The paper analyzes the effect of quadtree partition

method with different thresholds on various images in order to

compress an image with fractal approach. The paper also

addresses the cases where lossless compression cannot be

achieved. The traditional fractal image compression methods are

based on two different partitions on the same image but this

paper provides single quadtree partition method to achieve

compression.

Keywords—Quadtree, threshold, fractal and image

compression.

I. Introduction
The quadtree partition employs the popular and simple image

partitioning technique based on a recursive splitting of

selected image quadrants (shown in Fig. 1), enabling the

resulting partition to be represented by a tree structure in

which each non-terminal node has four descendents. The usual

top-down construction starts by selecting an initial level in the

tree, corresponding to some maximum range block size, and

recursively partitioning any block for which a match better

than some preselected threshold is not found (or more

efficiently, by deciding whether to split a block by examining

the variance of its pixels. The alternative bottom-up

construction begins with a uniform partition using the smallest

block size, and then proceeds to merge those neighbouring

blocks for which a more efficient representation is provided by

the resulting larger block one level up the quadtree. Compact

coding of partition details is possible by taking advantage of

the tree structure of the partition [4].

Fig. 1. Quadtree Partition

Jeet Kumar and Manish Kumar

Shri Ramswaroop Memorial Group of Professional Colleges, Lucknow,

India
E-mail: jeet@srmcem.ac.in

Jacquin’s original scheme used a variant of the quadtree

partition in which the block splitting was restricted to two

levels. Instead of automatically discarding the larger block

prior to splitting it into four subblocks if an error threshold

was exceeded, it was retained if additional transforms on up to

two subblocks were sufficient to reduce the error below the

threshold [4].

In this paper the threshold is used as a number between 0 and

1. This threshold is multiplied by a number 255 because the

values of the pixels in experimental images are in the range 0-

255. The product thus obtained is the maximum permissible

difference between the minimum and maximum values of

pixel in a partition.

II. Literature Review
Instead of storing an image bit by bit the idea to store the

image in the form of contractive transformation was given by

Michael Barnsley in 1988 [1]. Barnsley's graduate student

Arnaud Jacquin implemented the first automatic algorithm in

software in 1992 [2]. Since then the field of fractal image

compression has evolved rapidly. Many ideas have been

proposed till date towards the improvement of the image

compression with fractal approach but still extensive

computation requirement for compressing the image and

closeness between domain and range blocks are the major

issues. Traditionally an image is partitioned into non-

overlapping range blocks and domain blocks (non-overlapping

constraint is relaxed in domain blocks). Usually sizes of the

domain blocks are larger than the range blocks to fulfil the

contractive requirement. Some research work also advocated

domain blocks of same size as that of range blocks to exploit

self-similarity at same scale [3].

The size and shape of range blocks may vary to a great extent,

but in many approaches square shaped range blocks are

preferred. Although various mechanisms have been proposed

for image partition. Some approaches like fixed size partition,

quadtree partition, horizontal vertical partition and irregular

partition fall under right angled partition category while other

partition schemes like triangular and polygonal partition can

be used [4].

Usually size of the domain blocks are larger than range blocks

[5]. But most of the research is focussed on the fixed square

shaped block of size B×B for range and 2B×2B for domain [6-

8]. For each range block, i, every domain block is explored

with all possible transformations. Therefore this approach

needs complete domain pool searching and applying all the

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

83

transformations one by one which consumes much time. After

this a best matched domain block is selected on the basis of

minimum distance [9,10]. At last for each range block the

location of the best matched domain block is stored along with

the transformation applicable on the particular domain block.

Therefore the image is stored as a list of domain block

locations and corresponding transformations.

The traditional fractal image compression method described in

the previous paragraph is lossy. In fact most of the fractal

image compression methods are lossy. Only very few methods

are lossless, for example the method given by Korakot

Prachumrak et. al. that makes extensive usage of simultaneous

equations is lossless [11]. A common characteristic of most

images is that the neighbouring pixels are correlated and

therefore contain redundant information [12].

III. Proposed Work
Different applications need different type of compression.

Some application can tolerate loss up to a great extent but

other cannot tolerate the loss of even a single bit. These

different needs can be handled by setting up the threshold

value.

Traditionally the fractal image compression was done by

dividing a given image into domain blocks and range blocks,

i.e., two partitions are required on the same image. The

approach given here do not require two different partitions on

the same image, rather a single partition will serve the

purpose.

The output of quadtree decomposition can be explored for

self-similar subblocks. If a subblock with certain pixel values

found elsewhere in the image with same size or different size,

that block need not to be stored twice. The pixel value of the

block can be stored in a sorted array along with the

information of its replication, i.e., replication information can

be in the form of a triplet (row index for upper left corner,

column index for upper left corner, block size).

The work has been conducted on four types of images as

shown below.

A. Type 1 image
The image shown in figure 1 has only two gray levels.

Moreover these two gray levels occur in the regular or defined

regions therefore simplify the compression task.

Fig. 2. Type 1 Image with two areas

B. Type 2 image
The image shown in figure 2 has many gray levels. Moreover

these gray levels do not occur in the regular or defined

regions. Since the image is coarse grained, the compression

task is not very much complex.

Fig. 3. Type 2, Coarse Grained Image

C. Type 3 image
The image shown in figure 3 has many gray levels. But these

gray levels occur in somewhat defined regions. These images

are also known as gradient images. Since the gradient follows

a pattern, the compression task is not very much complex in

this case also.

Fig. 4. Type 3, Gradient Image

D. Type 4 image
These types of images are very complex. The image shown in

figure 4 has many gray levels. But these gray levels are so

irregularly placed that the search of local similarity is very

hard. These images are also known as fine grained images.

Fig. 5. Type 4, Fine Grained Image

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

84

IV. Experimental Results
Experiments have been done on these four types of images

as given below.

A. Working with type 1 image

Fig. 6(a). Quadtree partition of type 1 image with 0 threshold

Fig. 6(b). Quadtree partition of type 1 image with 0.1 threshold

Fig. 6(c). Quadtree partition of type 1 image with 0.2 threshold

Fig. 6(d). Quadtree partition of type 1 image with 0.3 threshold

TABLE I

NUMBER OF BLOCKS OF VARIOUS SIZES IN TYPE 1 IMAGE

Image

Type

Threshold Block

Size

No of

Blocks

Total

Type1 0.0 2×2 0 4

4×4 0

8×8 0

16×16 0

32×32 4

64×64 0

0.1 2×2 0 4

4×4 0

8×8 0

16×16 0

32×32 4

64×64 0

0.2 2×2 0 4

4×4 0

8×8 0

16×16 0

32×32 4

64×64 0

0.3 2×2 0 4

4×4 0

8×8 0

16×16 0

32×32 4

64×64 0

B. Working with type 2 image

Fig. 7(a). Quadtree partition of type 2 image with 0 threshold

Fig. 7(b). Quadtree partition of type 2 image with 0.1 threshold

Fig. 7(c). Quadtree partition of type 2 image with 0.2 threshold

Fig. 7(d). Quadtree partition of type 2 image with 0.3 threshold

TABLE 2

Number of Blocks of Various sizes in Type 2 Image

Image

Type

Threshold Block

Size

No of

Blocks

Total

Type2 0.0 2×2 231 252

4×4 21

8×8 0

16×16 0

32×32 0

64×64 0

0.1 2×2 310 405

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

85

4×4 89

8×8 6

16×16 0

32×32 0

64×64 0

0.2 2×2 295 408

4×4 106

8×8 7

16×16 0

32×32 0

64×64 0

0.3 2×2 271 390

4×4 107

8×8 12

16×16 0

32×32 0

64×64 0

C. Working with type 3 image

Fig. 8(a). Quadtree partition of type 3 image with 0 threshold

Fig. 8(b). Quadtree partition of type 3 image with 0.1 threshold

Fig. 8(c). Quadtree partition of type 3 image with 0.2 threshold

Fig. 8(d). Quadtree partition of type 3 image with 0.3 threshold

TABLE 3

Number of Blocks of Various sizes in Type 3 Image

Image

Type

Threshold Block

Size

No of

Blocks

Total

Type3 0.0 2×2 0 0

4×4 0

8×8 0

16×16 0

32×32 0

64×64 0

0.1 2×2 6 176

4×4 142

8×8 28

16×16 0

32×32 0

64×64 0

0.2 2×2 0 46

4×4 0

8×8 40

16×16 6

32×32 0

64×64 0

0.3 2×2 0 16

4×4 0

8×8 0

16×16 16

32×32 0

64×64 0

D. Working with type 4 image

Fig. 9(a). Quadtree partition of type 4 image with 0 threshold

Fig. 9(b). Quadtree partition of type 4 image with 0.1 threshold

Fig. 9(c). Quadtree partition of type 4 image with 0.2 threshold

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

86

Fig. 9(d). Quadtree partition of type 4 image with 0.3 threshold

TABLE 4

Number of Blocks of Various sizes in Type 4 Image

Image

Type

Threshold Block

Size

No of

Blocks

Total

Type4 0.0 2×2 0 0

4×4 0

8×8 0

16×16 0

32×32 0

64×64 0

0.1 2×2 91 91

4×4 0

8×8 0

16×16 0

32×32 0

64×64 0

0.2 2×2 421 422

4×4 1

8×8 0

16×16 0

32×32 0

64×64 0

0.3 2×2 742 760

4×4 18

8×8 0

16×16 0

32×32 0

64×64 0

V. Conclusion
Images of type 1 are very easy to compress and provides a

high compression ratio. We have lesser number of quadtree

partitions therefore need lesser space, moreover change in the

threshold do not leave much effect.

Maximum blocks in the images of type 2 are small, rarely

we have larger blocks in this case. Self-similar blocks can be

obtained at smaller scale. Compression outcomes are moderate

in this case. Relaxation in tolerance does not leave much effect

in this case also.

In type 3 images a gradual mandatory change is observed in

pixel values, therefore zero threshold does not provide any

lossless fractal compression on square blocks. If we relax the

tolerance a little bit (threshold=0.1) we have a huge number of

smaller blocks. Lossless fractal compression may be obtained

if we work on rectangular partitions.

A lossless fractal compression of type 4 images is very

complex. We do not have much to do until the tolerance

criterion is relaxed.

References
[1] Michael Barnsley, "Fractals Everywhere", Academic Press, Inc.,

1988.
[2] Arnaud E. Jacquin, “Image Coding Based on a Fractal Theory of

Iterated Contractive Image Transformations”, IEEE Transactions

on Image Processing, Vol.1, No.1, January 1992.
[3] Yao Zhao and Baozong Yuan,” A Novel Scheme for Fractal Image

Coding”, Institute of Information Science Northern Jiaotong

University, Beijing 100044, P.R.China, May 2001.
[4] Brendt Wohlberg and Gerhard de Jager, ”A Review of the Fractal

Image Coding Literature”, Member, IEEE, December 1999.

[5] Gaoping Li, “Fast Fractal Image Encoding Based on the Extreme
Difference Feature of Normalized Block”, College of Computer

Science & Technology, Southwest University for Nationalities,

Chengdu, China, 2009.
[6] Jinshu Han, “Fast Fractal Image Encoding Based on Local

Variances and Genetic Algorithm”, Dezhou University, China,

2009.
[7] Ying Zhao, Jing Hu, Dongxiang Chi and Ming Li, “A Novel

Fractal Image Coding based on Basis Block Dictionary”, School of

Electronics and Information, Shanghai dian ji University,
Shanghai, China, 2009.

[8] Yang Liu and Jin-guang Sun, “Face Recognition Method Based on

FLPP”, Liaoning Techinical University, Huludao Liaoning, China,
2010.

[9] D. Loganathanff, J. Amudha and K.M. Mehata, ”Classification and

Feature Vector Techniques to Improve Fractal Image Coding”,
Electrical and Electronics Engineering, Amrita Institute of

Technology and Science, Coimbatore, INDIA, 2003.

[10] Shen Furao and Osamv Hasegawa,”An Effective Fractal Image
Coding Method Without Search”, Japan, 2004.

[11] K. Prachumrak, A. Hiramatsu, T. Fuchida and H. Nakamura,

”Lossless Fractal Image Coding ”, Croatia, 2003.
[12] Sachin Dhawan, “A Review of Image Compression and

Comparison of its Algorithms”, India, 2011.

About Author (s):

The first author of the paper is working as

Assistant Professor in the department of

Computer Applications at Shri

Ramswaroop Memorial Group of

Professional Colleges, Lucknow for more

than 10 years. The author has achieved

MCA, M.Phil. & M. Tech. degrees and

pursuing Ph. D. (CS). The author has also

qualified UGC-NET with JRF in

Computer Science and Applications and

got published more than 10 papers in the

reputed forums like Springer etc.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

