

66

Goal Oriented Acceptance Testing For Multi

Agent System: V-Model Extension

Mandeep Kaur Balraj Singh Amandeep Kaur

Abstract -- Agent based Software Engineering, initially

derived from Artificial Intelligent (AI), is now becoming

increasingly popular among software engineers to develop

modern and complex intelligent systems. Agent oriented

systems contains intelligent agents that can perform a task

autonomously. They are goal oriented extension of objects.

In the recent years, with the emergence of AOSE, trails of

various traditional Object oriented approach are being

applied on it, to make it more and more acceptable in

Software Industry. Acceptance testing is an integral part of

traditional testing and it has drawn the interest of various

researchers who are working on AOSE concept. No formal

acceptance testing technique has been proposed yet for AO

systems. The paper proposes a formal way of conducting

Acceptance testing for agent oriented system by extending

the popular V-Model for software testing. A two steps testing

approach is proposed and a new phase “Goal Oriented

Acceptance Testing” is added in V-Model. Goal Oriented

Acceptance Testing lies on the demarcation of Internal and

External tests. A tester from the developer team performs

Goal Oriented Acceptance Testing on user’s end. Once the

Goal Oriented Acceptance Testing is passed, the user can go

for general acceptance testing with non-agent-based and

non-technical tests for his own satisfaction.

Keywords –agent; software agent; testing;

acceptance testing; goal oriented acceptance testing

Mandeep Kaur

Department of Computer Science and Engineering,

Lovely Professional University

India
mandeepkaurgirn@yahoo.com

Balraj Singh

Department of Computer Science and Engineering,

Lovely Professional University

India

balraj.13075@lpu.co.in

Amandeep Kaur

Department of Computer Science and Engineering,
Lovely Professional University

India

aman_heyer@yahoo.co.in

I. Introduction

Agent-Oriented Software Engineering is a programming

paradigm where the software agents is the centeric idea

behind construction of the software is centered-around the

concept of software agents. They could be taken as

abstractions of objects. In a way specific to its class of

agents, exchanged messages are interpreted using

receiving agents. At its core, in contrast to object-

oriented programming which has objects, AOP has

externally specified agents [1].

A. Properties of an Software Agent
By an agent-based system, we mean one in which the key

abstraction used is that of an agent. By an agent, we mean

a system that enjoys the following properties [2]:

 Pro-Activeness: agents are able to exhibit goal-

directed behaviour by taking the initiative and do

not simply act in response to their environment.

 Autonomy: agents encapsulate some state, and

make decisions about what to do based on this

state, with no inference of human or other system

 Social Ability: agents interact with other agents

via some kind of agent-communication language,

and typically have the ability to engage in social

activities in order to achieve their goals.

 Reactivity: agents are situated in an environment,

are able to perceive this environment, react to the

changes occurring in the environment due to

controllable or uncontrollable parameters.

B. Tropos
 An AOSE methodology, Tropos, which covers the whole

software development process and is based on two key

ideas [3]:

 First, from early analysis down to the actual

implementation, the notion of agent and all

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

67

related mentalistic notions that are used in all

phases of software development.

 Second, the kind of interactions that should

occur between software and human agents,

Tropos covers also the very early phases of

requirements analysis, thus allowing for a deeper

understanding of the environment where the

software is operational.

Tropos methodology spans five phases:

 Early requirements, concerned with the problem

understanding by studying an organizational

setting where the intended system will operate

 Late requirements, where the intended system is

described with relevant functions (hard goals)

and qualities (soft goals) and within its

operational environment. The intended system is

introduced as a new actor.

 Architectural design, where the system’s total

architecture is defined in terms of interconnected

through data, control, subsystems and other

dependencies. More system actors are

introduced.

 Detailed design, defines the behaviour of each

architectural component in more detail including

specification of communication and coordination

protocols. Agents' beliefs, capabilities, and goals

are specified in detail using existing modelling

languages like UML or AUML, along with the

interaction between them should occur between

software and human agents.

 Implementation, during this phase, the Tropos

specification, produced during detailed design, is

transformed into a skeleton for the

implementation. This is done through a mapping

from the Tropos constructs to those of a target

agent programming platform, such as JADE.

C. Test type
There are four types of testing: Agent testing, Integration

testing, System testing and Acceptance testing. The

objectives and scope of each type is described as follows:

 Agent testing: The smallest unit of testing in

agent-oriented programming is an agent. Testing

a single agent consists of testing its inner

functionality and agent’s capabilities to fulfil its

goals and to sense and effect the environment.

 Integration testing: An agent has been unit-

tested; we have to test its integration with

existing agents. Integration testing make sure

that a group of agents and environmental

resources work correctly together which involves

checking an agent works properly with the

agents that have been integrated before it and

with the “future” agents that are in the course of

Agent testing or that are not ready to be

integrated.

 System testing: Agents may operate correctly

when they run alone but incorrectly when they

are put together. System testing involves making

sure all agents in the system work together as

intended. Specifically, one must test the

interactions among agents (protocol,

incompatible content or convention, etc.) and

other concerns like security, deadlock.

 Acceptance testing: Test the MAS in the

customer execution environment and verify that

it meets the stakeholder goals, with the

participation of stakeholders.

D. Goal type
Different perspectives give different goal classifications.

For instance, classify agent goals in agent programming

into three categories, namely perform, achieve, and

maintain, according to the agent's attitude toward them.

Goals are classified into the following types according to

the different phases of the process:

 Stakeholder goals: Represent stakeholder

objectives and requirements towards the intended

system. This type of goal is mainly identified at

the early requirements phase of Tropos.

 System goals: Represent system-level objectives

or qualities that the intended system has to reach

or provide. This type of goal is mainly specified

at the late requirements phase of Tropos.

 Collaborative goals: Require the agents to

cooperate or share tasks, or goals that are related

to emergent properties resulting from

interactions. This type of goal can be called also

as group goal, and they often appear at the

architectural design phase of Tropos.

 Agent goals: Belong to or are assigned to

particular agents. This type of goal appears when

designing agents.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

68

E. Goal-oriented testing
Tropos integrates testing by proposing the lower branch

of the V and a systematic way to derive test cases from

Tropos modelling results. The left branch of the V

represents the specification stream, and the right branch

of the V represents the testing stream where the systems

are being tested (against the specifications defined on the

left-branch). The V-Model is a representation of the

system development process, which extends the

traditional waterfall model. Tropos guides the software

engineers in building a conceptual model, which is

incrementally refined and extended, from an early

requirements model to system design artefacts and then to

code, according to the upper branch of the V. One of the

advantages of the V-model is that it describes not only

construction stream but also testing stream (unit test,

integration test, acceptance test) and the mutual

relationships between them.

Fig 1: V-Model of Goal-Oriented Testing

Two levels of testing are distinguished in the model. At

the first level of the model (external test executed after

release), stakeholders (in collaboration with the analysts),

during requirement acquisition time produce the

specification of acceptance test suites. These test suites

are one of the premises to judge whether the system fulfils

stakeholders’ goals. At the second level (internal test

executed before release), developers refer to: goals that

are assigned to the intended system, high-level

architecture, detailed design of interactions and

capabilities of single agents, and implement these agents.

From the systematic literature review, it has been noted

that there had been very less attention given to formal

Acceptance Testing of Agent Oriented System. Most of

the things have been done for Agent Testing, Integration

Testing and Unit Testing. So, the problem that study deals

is Acceptance Testing of Agent Oriented System, which

is still and area of concern. Confidence building of users

and developers in autonomous agents is the primary goal

of testing MAS.

II. Proposed System
As we have seen in the above figures and graphs, that an

AO system can work well on developers end but may fail

on user’s end, due to agent’s autonomous specifications.

User is complete layman on the technical issues of agent

and its working. So, it proposed that Acceptance testing

should be on two levels:

 Once the system is installed on uses side, a

member/tester from development team must visit

the site and conduct an in-depth technical

acceptance testing to ensure that all agents are

working correctly on the user side also,

according to the specifications. These should be

those technical aspects that user may ignore or

may not know. This is what is referred as Goal

Oriented Acceptance Testing.

 Once the Goal Oriented Acceptance testing is

passed and it is made sure that all agents are

working correctly in user scenario also, then

second level of acceptance testing must be

conducted by user. This would be general

acceptance testing as conducted in all other

paradigms to for the user satisfaction. This level

of acceptance testing will not include details

about agents and their automations. User will

just check the AO system is meeting his general

requirements.

To make this “two level acceptance testing” successful,

V-Model of testing have been extended and an addition

step of “Goal Oriented Acceptance Testing” have been

added.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

69

Fig 2: Extension for V-Model for Goal Oriented Acceptance

Testing

In the extension for V-Model, an additions phase called

“Goal Oriented Acceptance Testing” has been placed on

the demarcation of Internal and External Tests. This is

because Goal Oriented Acceptance Testing is done by a

tester who is a part of internal development team, but it is

done at user’s end which is an external place for him.

For Goal Oriented Acceptance Testing, the tester must

follow Fig 3.

Fig 3: Flowchart for Goal Oriented Acceptance Testing

The V-Model is a representation of the system

development process, which extends the traditional

waterfall model. Tropos guides the software engineers in

building a conceptual model, which is incrementally

refined and extended, from an early requirements model

to system design artefacts and then to code, according to

the upper branch of the V. With an added phase of Goal

Oriented Acceptance Testing, AO systems will perform

better on user’s side and both developers and users will

gain confidence on AOSE.

III. Implementation
A Jadex based game called Hunter Prey was downloaded

for testing. This game is freely available with its source

codes on Jadex website [4]. The game Hunter Prey was

executed in Eclipse IDE [5]. The game had some

specifications:

 The hunter prey scenario consists of two kinds of

creatures living in a grid world.

 The basic task of hunters is to chase, while preys

move around looking for food.

 Both kinds of creatures have to act

autonomously in the environment on basis of

their current local view, experiences made in the

past and communications with others. Besides

hunter and preys the environment accommodates

other passive world objects.

 On the one hand there are trees on many squares

that prohibit creatures running on such fields and

on the other hand little plants grow at random

squares at the map.

 These plants can be eaten by the preys if they are

on the same field.

 The scenario is round-based with a fixed time

slot for each round. This means that all creatures

in the world have to issue their next action

(moving to some adjacent square or eating

something on the current square) with that round

time.

 If no action is announced no action will be

executed.

 The environment will decide in each round if an

action succeeds or fails.

Finally, Zeta Test [6] was used to create and execute test

cases on the game.

Fig 4: Snapshot of Hunter Prey Game

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

70

The game is also available in executable form on the web

server of Jadex website [7].

When the game was executed on the user end, it was

noted that some the specifications of the game were not

met. Not all agents were working properly. But the same

game was running perfectly on the web server, meeting

all the specifications.

So, it was some compatibility error which was occurring

on user’s end. So, this required a Goal Oriented

Acceptance testing. Some acceptance test case based on

Game and agent scenarios were designed.

The test cases were then feed in Zeta Test software and

executed.

A. Test Case Run for Hunter Prey Game
The testing procedure was conducted three times.

Firstly on the correctly working game on web server and

following results were achieved.

Fig 5: Test result for Goal Oriented Acceptance testing on

Hunter Prey Game on Web Server

All the test cases conducted on the game Hunter Prey on

web server were successful. The game worked perfectly

on the web server and showed no deviation from the user

specification. 100% of them were successful.

Secondly, testing was done for Hunter Prey game on user

end and following results were achieved

Fig 6: Test result for Goal Oriented Acceptance testing on

Hunter Prey Game on User End

Not all test cases were successful for the Hunter Prey

game when executed on the user’s end. 40% of them were

successful, 40% of them failed, and 20% of them were not

successful.

Finally a formal retesting is done by user to ensure that all

basic concepts are met irrespective to agent automation.

Fig 7: Test result for General Acceptance testing on Hunter

Prey Game by User

Not all test cases were successful for the Hunter Prey

game when executed by user with non-technical aspects.

60% of them were successful, 40% of them failed.

B. Collective Analysis of all three testing
Table 5: Collective Table for Test Score of each test case for

Hunter Prey Game in all three scenarios

Sr.

No

.

Test Cases Acceptan

ce Testing

on

Developer

's System

Acceptanc

e Testing

on User's

System

Retesti

ng by

User

1

Pray is

displayed on

screen 2 2 2

2

Pray moves

autonomously

around the

grid 2 2 2

3

Pray doesn't

collide with

trees on grid 2 2 N/A

4

Pray eats

grass 2 1 N/A

5

Grass is

displayed on

screen

autonomously

and randomly 2 2 2

6

Grass

disappear

when eaten 2 1 N/A

7 Grass 2 1 N/A

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

71

reappears

after random

time

8

Hunter is

displayed on

screen 2 0 0

9

Hunter moves

around the

grid

autonomously 2 0 0

10

Hunter

doesn’t

collide with

trees on grid 2 0 N/A

11

Hunter eats

pray 2 0 N/A

12

Multiple

Prays are

displayed on

screen 2 2 2

13

Multiple

Prays moves

autonomously

around the

grid 2 2 2

14

Multiple

Prays

doesn't

collide with

trees on

grid 2 2 N/A

15

Multiple

prays eats

grass 2 1 N/A

16

Multiple

Hunters are

displayed

on screen 2 0 0

17

Multiple

Hunters

moves

around the

grid

autonomous

ly 2 0 0

18

Multiple

Hunters

doesn’t

collide with

trees on

grid 2 0 N/A

19

Multiple

Hunters

eats pray 2 0 N/A

20

An empty

grid is

displayed

with trees

only 2 2 2

Total

Testing

Score 40 20 12

Table Legends for Y-Axis

Successful 2

Not Successful 1

Failure 0

Tests not

performed by

user

N/A

Fig 8: Collective Graph for Test Score of each test case for

Hunter Prey Game in all three scenarios

Collectively, it has been noted that,

All the test cases conducted on the game Hunter Prey on

web server were successful. The game worked perfectly

0

1

2

1 3 5 7 9 11 13 15 17 19

Acceptance
Testing on
Developer's
System

Acceptance
Testing on
User's
System

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

72

on the web server and showed no deviation from the user

specification. 100% of them were successful.

Not all test cases were successful for the Hunter Prey

game when executed on the user’s end. 40% of them were

successful, 40% of them failed, and 20% of them were not

successful.

Not all test cases were successful for the Hunter Prey

game when executed by user with non-technical aspects.

60% of them were successful, 40% of them failed.

Fig 9: Graph based on total test scores

The above graph shows the total test scores acquired by

all three testing scenarios. The acceptance testing on

Developer’s System passed all test cases and have total

score of 40. Acceptance testing on User’s System passed

on 40% tests and 20% were not successful. So, it scored

20. Lastly, Retesting by user on non-technical non-agent

based testing scored lowest 12.

IV. Conclusion and Future Scope
In this paper, two step acceptance testing and an extension

for V-Model for testing has been proposed. This extended

V-Model has an additional phase called “Goal Oriented

Acceptance Testing”. This phase lies on the demarcation

of Internal and External tests and makes the Step 1 of

Acceptance Testing. In this phase, a tester from developer

team visits the site of customer where the AO system is

installed and checks whether all agents are working

according to their goals or not. The tester must ensure that

all agents fulfil their basic agent properties, i.e., Pro-

activeness, Social Ability, Reactivity, and Autonomous

Behaviour. The phase Goal Oriented Acceptance Testing

lies on the demarcation of Internal and External tests

because it is performed by a tester of developer team on

the user’s end. Once the Goal Oriented Acceptance

Testing is complete it proceeds to Step 2. The step 2 is

general Acceptance testing done by user for his own

satisfaction. It is done in a less technical way and in

accordance to the user specification. When the AO system

passes both the Acceptance Tests, it is ready to use.

In this thesis, a small AO game is tested using the

proposed extended V-Model. In future, massive industry

oriented AO systems can be tested using this extended

model. Testing such massive AO systems will bring more

enhancements to the newly proposed extension of V-

Model.

V. References
[1]http://en.wikipedia.org/wiki/Agent- oriented_programming

[2]Wooldridge M. (1991), “Agent-Based Software Engineering”, ACM

[3]Houhamdi Z. Athemena B.(2011) “Structured Sytem Test Guide

Generation Process for Multi-Agent System”, International Journal of

Computer and Engineering

[4]http://jadex-agents.informatik.uni-

hamburg.de/xwiki/bin/view/About/Overview

[5]http://www.eclipse.org/

[6]http://www.zeta-test.com/index.html

[7]http://jadex-agents.informatik.uni-

hamburg.de/xwiki/bin/view/Usages/Examples

[8]Castle C.J.E (2011) “Principles and Concepts of Agent-Based

Modelling for Developing Geospatial Simulations”, Academia.edu

[9]Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pav´on, and John

Thangarajah (2011) “Testing in Multi-Agent Systems”, Springer

[10]Fazziki EL A, Nouzri S, Sadgal M.(2012) “An Agent-Oriented

Information System: A Model Driven Approach”, Internal Journal of

Computer Applications

[11]Jorge J. Gomez-Sanz, Ruben Fuentes-Fern´andez, Juan

Pav´on(2012), “ Understanding Agent Oriented Software Engineering

Methodologies”, IEEE

[12]Mark F. Wood, Scott A. DeLoach(2001) “An Overview of the

Multiagent Systems Engineering Methodology”, First International

Workshop on Agent-Oriented Software Engineering

[13]Nguyen C, Perini A, Tonella P. (2011) “A Goal-Oriented Software

Testing Methodology Technical Report” ACM

0
5

10
15
20
25
30
35
40
45

1 2 3

Total Testing Score

Total Testing
Score

1: Acceptance Testing on Developer's System

2: Acceptance Testing on User's System

3: Retesting by User

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 3 [ISSN 2250 – 3765]

Publication Date : 09 September 2013

