

79

Digital ANFIS Architecture and Performance

Analysis for Nonllinear Systems
Prasad R. Pande, Prashant L. Paikrao, Devendra S. Chaudhari

Abstract— Neuro Fuzzy systems, nowadays drawing attention

of many researchers since being able to carry both neural

networks and fuzzy logic’s benefits. Adaptive Neuro Fuzzy

Inference System (ANFIS) is such a neuro fuzzy architecture

which has been widely accepted since invented. It is used in

different applications like universal approximator, non-linear

system realization, pattern recognition etc. However, because of

variety of applications, implementation of ANFIS has been turn

out to be specific and same implementation barely utilized with

another one. FPGAs are potential enough to bring flexibility in

hardware implementation of ANFIS so as to make it generic and

application-independent. In this paper, an ANFIS model

designing and implementation on FPGA is described. A unique

dynamic ANFIS structure is realized with VHDL which is

independent of system to be realized, membership function type

used. It can be easily configurable with order of ANFIS, number

of inputs/outputs, and number of membership functions. The

study results illustrate that ANFIS presented in paper has been

successfully realized with test nonlinear functions. Evaluations

using standard error measurements revealed closer

approximation of digital ANFIS to software one. The MATLAB

simulation and FPGA implementation results clearly indicate

that the hardware ANFIS model is acceptable in calibrate mode.

Keywords—ANFIS, Digital System, FPGA, VHDL, Neuro

Fuzzy System

I. Introduction
Neuro-Fuzzy Systems (NFS) are centre of research and real

world problems solutions from many recent years since they

have advantages of both Artificial Neural Networks (ANN)

and Fuzzy Inference Systems (FIS) [1]. Due to the growing

need of adaptive intelligent systems to solve the real world

problems NFS draws attention of many researchers which

leads to different modelling techniques for either dedicated or

generalized problems.

In recent years, hardware implementations of different neuro-

fuzzy architectures like Adaptive Neuro-Fuzzy Inference

System (ANFIS) have progressed a lot. Different neuro-fuzzy

Prasad R. Pande

Government College of Engineering, Amravati
Maharashtra, India

Prashant L. Paikrao

Government College of Engineering, Amravati

Maharashtra, India

Dr. Devendra S. Chaudhari

Government College of Engineering, Amravati

Maharashtra, India

technologies emerged as optimal solutions for researchers in

terms of speed of operation, cost, flexibility, usability and their

trade-offs [2, 3]. Scientists have been provided with lot of

flexibleness and versatility by neuro-fuzzy approaches so as to

simulate or design their systems as per their requirements. It is

researcher‟s and designer‟s responsibility to identify the

perfect solution among available ones for their system by

considering its feasibility and different trade-offs.

 Real world systems demands for ANFIS hardware model

rather than software with a tradeoff between versatility and

performance [2, 4]. Since training process of ANFIS model

cannot be driven with hardware because of memory

dependency, it has to be carried out first as off-line in software.

To take full advantage of such heterogeneous solution,

integration of all parts of ANFIS is desirable so as to

accommodate all the components of a typical embedded

system on a single chip. Also the digital version of ANFIS

should offer desired speed short time-to-market, re-usability,

and availability of Intellectual Property (IP) cores with high

flexibility [5].

 Hence the intention behind development is to elaborate

comprehensive architecture representing ANFIS model which

can be widely used for different applications without using

application dedicated resources. Furthermore, old model is

aimed to be redesigned in a standard, extensively used

hardware description language so as to be acceptable among

designers and developers for FPGA implementations.

Amended digital architecture of ANFIS is presented here

to realize on Field Programmable Gate Array (FPGA) using

any hardware description language VHDL. Different three

input nonlinear functions representing individual system are

chosen for the analysis of first order ANFIS model. With

respect to this function, ANFIS training was carried out in

software and parameters set is obtained from it. After getting

parameters list and membership values from training, digital

architecture is modelled and implemented using hardware

description language on FPGA. It used fixed point

representation in language for positive integer inputs and

signals to reduce model complexity. An attempt is made to

design universal fuzzifier to reduce dependency on

membership function type. ANFIS Architecture can be

configured for necessary changes required for membership

function numbers and order of inference polynomial outputs,

if any. In the end of paper, moderate internal description of

digital architecture of ANFIS is studied with performance and

result analysis and paper concluded with further possible

amendments respect to the model.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

80

II. ANFIS
Adaptive Neuro-Fuzzy Inference System (ANFIS) was

originally presented by Jang in 1993[6]. ANFIS is a hybrid

neuro fuzzy technique that uses Fuzzy Logic to transform

given inputs into a desired output through highly

interconnected neural network processing elements and

information connections, which are weighted to map the

numerical inputs into an output. ANFIS combines the benefits

of the two machine learning techniques (Fuzzy Logic and

Neural Network) into a single technique. An ANFIS works by

applying Neural Network learning methods to tune the

parameters of a Fuzzy Inference System.

 To present the ANFIS architecture, two fuzzy IF-THEN

rules based on a first order Sugeno model are considered:

Rule (1): IF x is A1 AND y is B1, THEN f1 = p1x + q1y + r1.

Rule (2): IF x is A2 AND y is B2, THEN f2 = p2x + q2y + r2.

Where:

• x and y are the inputs,

• Ai and Bi are the fuzzy sets,

• fi are the outputs within the fuzzy region specified by the

fuzzy rule, and

• pi, qi and ri are the consequent parameters that are

determined during the training process.

Figure 1 – Generalized ANFIS Architecture
[6]

 The ANFIS architecture employing Sugeno inference

model to implement above two rules is shown in Figure 1. In

this figure, a circle indicates a fixed node, whereas a square

indicates an adaptive node. ANFIS has five-layer architecture.

Each layer is explained in detail below.

 In Layer (1), all the nodes are adaptive nodes. The outputs

of Layer (1) are the fuzzy membership grade of the inputs,

which are given by the following equations:

 for i = 1, 2, or (1)

 for i = 3, 4 (2)

 Where x and y are the inputs to node i, and Ai and Bi are

the linguistic labels associated with this node function.

 and can adopt any fuzzy membership

function. For example, if the bell shaped membership function

is employed, is given by:

 (3)

Where ai, bi and ci are the parameters of the membership

function.

In Layer (2), the nodes are fixed nodes. This layer involves

fuzzy operators; it uses the AND operator to fuzzify the

inputs. They are labeled with M, indicating that they perform

as a simple multiplier. The output of this layer can be

represented as:

 for i = 1, 2 (4)

These are the so-called firing strengths of the rules.

In Layer (3), the nodes are also fixed nodes labeled by N,

to indicate that they play a normalization role to the firing

strengths from the previous layer. The output of this layer can

be represented as:

 for i = 1, 2 (5)

Outputs of this layer are called normalized firing strengths.

 In Layer (4), the nodes are adaptive. The output of each

node in this layer is simply the product of the normalized

firing strength and a first order polynomial (for a first order

Sugeno model). The output of this layer is given by:

 (6)

Where di, ei, and gi are the consequent parameters.

 In Layer (5), there is only one single fixed node labeled

with „+‟. This node performs the summation of all incoming

signals. The overall output of the model is given by:

 (7)

 The learning algorithm for ANFIS is a hybrid algorithm

that is a combination of gradient descent and least squares

methods. In the forward pass of the hybrid learning algorithm,

node outputs go forward until Layer 4 and the consequent

parameters are determined by the least-squares. In the

backward pass, the error signals propagate backward and the

premise parameters are updated using gradient descendent.

The hybrid learning approach converges much faster by

reducing search space dimensions of the original back

propagation method [7, 8].

 ANFIS model is not a structurally rigid adaptive network.

Layer 3 and 4 can be merged together and overall ANFIS

could result into four layer structure. In that case, weight

normalization is performed at very last stage [8]. This theory

has been into consideration while designing the presented

digital ANFIS system.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

81

III. System Development of Digital
ANFIS

FPGA implementable architecture of ANFIS was pioneered by

two researchers, H.J.B. Saldana and C.S Cardenas. They have

first implemented it for two input nonlinear function [9].

Furthermore, architecture was modified for three input single

output nonlinear function by them [10]. The system was

described in hardware descriptive language and successfully

implemented on FPGA.

 In presented work, old architecture is ameliorated to bring

flexibility for 3 input nonlinear systems. The training for

selected nonlinear functions is done off-line in MATLAB

environment. A script is developed which can be modified for

any numbers and types of membership functions and epoch

numbers. It is also calibrated to give positive integers for

membership values and consequent parameters of driven

ANFIS. Once training done, all these values and parameters

are unchanged during further system operation and stored in

memories of respective sub-blocks of digital system.

 The digital architectural design of ANFIS is divided into

four subsystems – Fuzzifier, Permutator, Inference and

Defuzzifier as shown in Figure 2. In this, three numeric

positive integer inputs are represented by l, m, and n which

exemplify nonlinear system‟s inputs. The output is the overall

ANFIS system output and ready signal indicate end of system

operation or system readiness for another set of inputs. Other

than these, there are some control signals like clock and reset

which can be given from FPGA kit to be used for

implementation. Brief narration about each subsystem is given

below.

Figure 2 – Digital ANFIS Architecture

A. Fuzzifier
The first subsystem confers membership values for each of the

three inputs l, m and n. As shown in Figure 3, it has total three

-

 Read-only-memories (store_l, store_m, store_n) used to

store the membership function values for each input.

These are directly exported from MATLAB script

dynamically.

 Compare and Mapping blocks (Compare_l, Compare_m

and Compare_n) that, as named, compares and gives

appropriate membership values of their respective input.

 It also comprised a controller called Fuzz_controller to

manage all the operations flow. All membership values are

stored in respective ROMs first for initial clock cycles given to

Fuzzifier. After that, every external input is compared and

mapped with respective ROM membership values and at last

given out through l_Fout, m_Fout and n_Fout signals.

fuzz_ready signal is generated to indicate Permutator that

values are available for further processing. A reset to this

block clears all stored values and whole block operation starts

from initial steps.

Figure 3 - Fuzzifier subsystem

B. Permutator
The Permutator stores membership values that are forwarded

by the Fuzzifier subsystem. Each possible permutation of

these values is generated so that all membership values can be

multiplied by the next subsystem. This operation has to be

done to get different rule strengths for inference operation.

 Permutator comprised of three circular shift registers-

Circ_fun_l, Circ_fun_m and Circ_fun_n, where the storage

and permutation process is carried out, and a controller as

shown in Figure 4. Operation of Permutator starts with signal

fuzz_ready from Fuzzifier. Each set of rule strength (weight)

factors are tracked with seq_add signal to keep

synchronization with consequent parameters in next Inference

subsystem. Signals finish and per_ready indicates termination

of permutation process and operation of Permutator

respectively. Internal control signals from controller are

omitted to avoid complexity.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

82

Figure 4 - Permutator subsystem

C. Inference
Inference subsystem is responsible for calculating rule firing

strengths. It has following blocks and a controller shown in

Figure 5.

 Poly_Gen has inputs from the user as well as from

Seq_ROM which stores the consequent parameters

obtained from script. It gives Sugeno inference outcomes

in synchronization with seq_add signal.

 Two MAC (Multiplier-Accumulator) units consisting

Multiplier, Storage registers and Accumulator each for

calculation of Numerator and Denominator of equation

(7). MAC unit1 comprises Multiplier 1, Reg_W and

Den_Acc gives output Den while MAC unit2 –

Multiplier 2, Reg_FW and Num_Acc collectively work

and give output signals Num. In MAC units, set of

membership values are multiplied with each other and

with polynomial function to obtain the weights, firing

strength of rules.

 Controller which controls the overall operation with

respect to signals from previous subsystem and internal

design of block.

Figure 5 - Inference subsystem

D. Defuzzifier
The Defuzzifier subsystem carry out the division operation

between signals Num and Den obtained from Inference

subsystem. The result of this division output signifies to the

output of the ANFIS. It contains a divider, and a controller as

shown in Figure 6. Its function is described by the following

equation:

 (8)

Figure 6 - Defuzzifier subsystem

IV. System Performance and
Result Analysis

In this section, simulation and FPGA implementation results

of ANFIS are discussed along with their performance

regarding to nonlinear functions. These nonlinear functions

represent nonlinear systems chosen for testing purpose. A

script is written for individual functions and training is carried

out in MATLAB 7.12 to get input membership values and

consequent parameter set. After training, membership values

and consequent parameters are converted into binary fixed

point numbers to be stored in respective ROMs inside ANFIS

design. ANFIS architecture is then designed and simulated

using ALDEC Active-HDL version 9.1 (Expert Edition).

Later, for FPGA implementation, ALTERA DE2 Kit is used

which has FPGA - Cyclone II device family. Arbitrary binary

input values are presented to the system and their results are

verified with MATLAB results obtained for respective

function.

 Following are 4 test nonlinear functions chosen all with

gbellmf, epoch no. -20 and 3 membership functions per input

which can be configurable.

 l,m,n ϵ [1,6] (9)

 l,m,n ϵ [1,4] (10)

 l,m,n ϵ [1,5] (11)

 l, m ϵ [1,5] & n ϵ [1,4] (12)

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

83

Figure 7 illustrates results of MATLAB as well as FPGA for

1
st
 nonlinear function in equation (9). As it is clearly seen that

Output lines are almost overlapped indicating the accuracy of

the system.

Figure 7 – Graph between MATLAB and FPGA results for equation (9)

 The preciseness of developed model can be determined

from percentage error evaluated for FPGA outcomes and

MATLAB results below in Figure 8 for same function.

Figure 8 – Percentage Error Graph for all samples tested for equation (9)

 In order to measure correctness and performance of

nonlinear systems chosen for experiment, Mean Square Error

(MSE) is calculated which is briefed in below table I.

TABLE I. MEAN SQARE ERROR OF NONLINEAR FUNCTIONS

Nonlinear

Function

No. of

Samples
Mean Square Error (MSE)

Function 1 216 0.5509

Function 2 64 0.6875

Function 3 125 0.5120

Function 4 100 0.5300

V. Conclusion with Future
Extents

Early ANFIS architecture has design complexity with

membership function type and approach is developed with

zero order which could be impractical in real world. Also, it

has been observed that the performance varies significantly

with nonlinear function change.

 Presented modified architecture ensures universal fuzzifier

calculations since it removes dependency on type of

membership function. It also works with any order and

membership function numbers with little redesigning.

MATLAB simulation and FPGA implementation results

shows that there is acceptable error level obtained and model

can be widely used for different nonlinear systems in

calibrated mode.

 Presented work focuses on reducing the design and

bringing dynamic nature in it rather than using knotty floating

point calculation. The architecture of ANFIS could be

amended with negative integer input range as well in future.

References
[1] Nauck D., “Neuro Fuzzy Systems: Review and Prospects”, European

Congress Intelligent Techniques and Soft Computing (EUFIT’97), pp.
1044–1053, 1997

[2] Echanobe J., Campo I. D., Bosque G., “An adaptive neuro-fuzzy system
for efficient implementations”, International Journals on Information

Sciences, pp. 2150–2162, 2008.

[3] Aldair A., Wang W., “FPGA Based Adaptive Neuro Fuzzy Inference

Controller For Full Vehicle Nonlinear Active Suspension Systems”,
International Journal of Artificial Intelligence & Applications (IJAIA),

Vol.1, No.4, pp 1-15, 2010.

[4] Campo I. D., Echanobe J., Bosque G., Tarela J. M., “Efficient

Hardware/Software Implementation of an Adaptive Neuro-Fuzzy

System” , IEEE Transactions on Fuzzy Systems, Vol. 16, No. 3, pp.761-
778, 2008.

[5] Sulaiman N., Obaid Z. A., Marhaban M. H. and Hamidon M. N., “
FPGA- Based Fuzzy Logic: Design and Applications – a Review”,

IACSIT International Journal of Engineering and Technology, Vol.1,
No. 5, pp 491-503, 2009.

[6] Jang J. S. R., “ANFIS: Adaptive-network-based fuzzy inference
systems”, IEEE Trans. on Systems, Man, and Cybernetics, Vol. 23, No.

3, pp 665-685, 1993.

[7] Jang J. S. R., Sun C.T., “Neuro-fuzzy modeling and control”,
Proceedings of the IEEE, Vol. 83, No.3, pp 378-406, 1995.

[8] Jang J. S. R., Sun C.T., Mizutani E., Neuro-Fuzzy and Soft Computing,

Prentice-Hall, Upper Saddle River NJ, USA, 335-368, 1997.

[9] Saldana H.J.B., Cardenas C.S., “Design and implementation of an

adaptive neuro fuzzy inference system on an FPGA used for nonlinear
function generation”, IEEE ANDESCON, pp. 1-5, 2010.

[10] Saldana H.J.B., Cardenas C.S., “A digital architecture for a three input

one output zero-order ANFIS”, IEEE Third Latin American Symposium

on Circuits and Systems (LASCAS), pp. 1-4, 2012.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

