

39

Floating Point Unit Implementation on FPGA

Manish

Asst. Prof., Delhi Technical Campus, Bahadurgarh

Sushil Kumar

Reader, Maharaja Surajmal Institute of Technology, New Delhi

Pradeep Sangwan

Reader, Maharaja Surajmal Institute of Technology, New Delhi

ABSTRACT
As densities of FPGA are increasing day by day,

the feasibility of doing floating point calculations

on FPGAs has improved. Moreover, recent works

in FPGA architecture have changed the design

tradeoff space by providing new fixed circuit

functions which may be employed in floating-

point computations. By using high density

multiplier blocks and shift registers efficient

computational unit can be developed. This paper

evaluates the use of such blocks for the design of

floating-point units including adder, subtractor,

multiplier and divider.

1. INTRODUCTION:

Floating-point unit is a part of a computer system

specially designed to carry out operations on floating

point numbers. Typical operations

are addition, subtraction, multiplication, division.

Floating-point operations are often pipelined. In

superscalar architectures without general out-of-order

execution, floating-point operations were sometimes

pipelined separately from integer operations.

Over the past few years the use of FPGAs in

compute-intensive applications has been growing.

The vast majority of applications have employed

fixed-point arithmetic due to its smaller size. The key

advantage of floating-point over fixed-point is its

ability to automatically scale to accommodate a wide

range of values using its exponent. Floating-point is

thus preferred by programmers for non-integer

computations when it is available on CPUs due to its

ease of use. However, this scaling behavior comes at

the cost of reduced accuracy. A 64-bit fixed point

Representation can have more accuracy (but less

range) than a 64-bit floating-point representation.

2. FLOATING POINT UNIT

ORGANIZATION:

The FPU chip performs all floating-point functions

for microprocessor chip set. The FPU has two fully-

pipelined execution units, allowing two floating-point

mathematical operations and two floating-point

memory operations every cycle. The FPU register file

contains 32, 64-bit entries and has eight read ports

and four write ports. Load and store data queues

provide a pipelined interface between the IU and the

FPU, streamlining data flow and minimizing unused

cycles. The FPU offers peak performance of 300

double-precision MFLOPS with a clock frequency of

75 MHz

The IU places floating-point instructions in the

floating-point instruction queue in the IU. Each entry

in the floating-point instruction queue is arranged as

a quad word. The dispatch mechanism is similar to

that of the IU: from zero to four floating-point

instructions can be dispatched by the IU to the FPU

each cycle. Instructions are dispatched only when the

FPU has adequate resources available to execute the

instructions. The floating-point instruction queue

provides temporary storage for floating-point

instructions while any dependencies that might

prevent the floating-point instructions from being

executed (such as waiting for dependent loads to

complete, etc.) are cleaned up.

Floating-point instruction dispatches and floating-

point loads and stores to the data streaming cache are

controlled by the IU. The IU is responsible for

generating all address and control signals for

floating-point loads and stores to the data streaming

cache. Accesses that miss in the data streaming cache

and require interfacing to main memory are handled

by the off-chip cache controller. During these miss

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Subtraction
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Instruction_pipelining
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution

40

cycles, the FPU continues to execute floating point

instructions already in the queue.

Once floating-point data is retrieved from the data

streaming cache, it is placed in the load data queue.

For store operations, the result is placed in the store

data queue. As soon as the corresponding address

information from the tag RAM is available, the data

is written out to the data streaming cache. Figure 1

diagrams the floating-point data path.

Figure1:Floating Point data path

3. CONCEPTUAL OVERVIEW:

The input operands are separated into their mantissa

and exponent components. The comparison of the

operands to determine which is larger only compares

the exponents of the two operand, so in fact, if the

exponents are equal then both the input numbers are

treated equally to populate the registers.

This is not an issue because the reason the operands

are compared is to find the operand with the larger

exponent, so that the mantissa of the operand with the

smaller exponent can be right shifted before

performing the addition. If the exponents are equal,

the mantissas are added without shifting.

Figure 2: Conceptual overview of FPU

4. FLOATING POINT NUMBERS

There are several ways to represent real numbers on

computers. Floating-point representation - the most

common solution - basically represents real in

scientific notation. Scientific notation represents

numbers as a base number and an exponent. For

example, 123.456 could be represented as 1.23456 ×

10
2
. In hexadecimal, the number 123.abc might be

represented as 1.23abc × 16
2
.

Floating-point solves a number of representation

problems. Fixed-point has a fixed window of

representation, which limits it from representing very

large or very small numbers. Also, fixed-point is

prone to a loss of precision when two large numbers

are divided. Floating point on the other hand,

employs a sort of "sliding window" of precision

appropriate to the scale of the number. This allows it

to represent numbers from 1,000,000,000,000 to

0.0000000000000001 with ease.

 4.1 STORAGE LAYOUT

IEEE floating point numbers have three basic

components: the sign, the exponent, and the mantissa.

The mantissa is composed of the fraction and an

implicit leading digit (explained below). The

exponent base (2) is implicit and need not be stored.

The following figure shows the layout for single (32-

bit) and doubles (64-bit) precision floating-point

values. The number of bits for each field are shown

(bit ranges are in square brackets):

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

41

Figure 3: Layout for single and double bit precision

floating point values

4.1.1 THE SIGN BIT

The sign bit is as simple as it gets. 0 denotes a

positive number; 1 denotes a negative number.

Flipping the value of this bit flips the sign of the

number.

4.1.2 THE EXPONENT

The exponent field needs to represent both positive

and negative exponents. To do this, a bias is added to

the actual exponent in order to get the stored

exponent. For IEEE single-precision floats, this value

is 127. Thus, an exponent of zero means that 127 is

stored in the exponent field. A stored value of 200

indicates an exponent of (200-127), or 73. The

exponents of -127 (all 0s) and +128 (all 1s) are

reserved for special numbers.

For double precision, the exponent field is 11 bits,

and has a bias of 1023.

4.1.3 THE MANTISSA

The mantissa, also known as the significand,

represents the precision bits of the number. It is

composed of an implicit leading bit and the fraction

bits.

In order to maximize the quantity of representable

numbers, floating-point numbers are typically stored

in normalized form. This basically puts the radix

point after the first non-zero digit. In normalized

form, five is represented as 5.0 × 10
0
.

A nice little optimization is available to us in base

two, since the only possible non-zero digit is 1. Thus,

we can just assume a leading digit of 1, and don't

need to represent it explicitly. As a result, the

mantissa has effectively 24 bits of resolution, by way

of 23 fraction bits.

4.2 DOUBLE PRECISION FLOATING

POINT NUMBER

The IEEE 754 standard defines how double precision

floating point number are represented. 64 bits are

used to represent a double precision floating point

number.

Figure 4: Double precision floating point number bit

format

The sign bit occupies bit 63. ‗1‘ signifies a negative

number, and ‗0‘ is a positive number. The exponent

field is 11 bits long, occupying bits 62-52. The value

in this 11-bit field is offset by 1023, so the actual

exponent used to calculate the value of the number is

2^(e-1023). The mantissa is 52 bits long and occupies

bits 51-0. There is a leading ‗1‘ that is not included in

the mantissa, but it is part of the value of the number

for all double precision floating point numbers with a

value in the exponent field greater than 0. A 0 in the

exponent field corresponds to a denormalized

number, which is explained in the next section. The

actual value of the double precision floating point

number is the following:

Value = -1^(sign bit) * 2^(exponent – 1023) *

1.(mantissa)

(1.mantissa) being a base 2 representation of a

number between 1 and 2, with 1 followed by a

decimal point and the 52 bits of the mantissa.

For an example, how would the number 3.5 be

represented in a double precision floating point

format? The sign bit 63 is 0 to represent a positive

number. The exponent will be 1024. This is

calculated by breaking down 3.5 as (1.75) * 2^(1).

The exponent offset is 1023, so you add 1023 + 1 to

calculate the value for the exponent field. Therefore,

bits 62-52 will be ―1000000000‖. The mantissa

corresponds to the 1.75, which is multiplied by the

power of 2 (2^1) to get 3.5. The leading ‗1‘ is

implied in the mantissa but not actually included in

the 64-bit format. So .75 is represented by the

mantissa. Bit 51, the highest bit of the mantissa,

corresponds to 2^(-1). Bit 50 corresponds to 2^(-2),

and this continues down to Bit 0 which corresponds

to 2^(-52). To represent .75, bits 51 and 50 are 1‘s,

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

42

and the rest of the bits are 0‘s. So 3.5 as a double-

precision floating point number is:

Figure5: Double precision representation of 3.5

4.3 BASIC FLOATING POINT

 ARITHMETIC

The floating-point multiplier unit is the simplest of

the arithmetic operations—the significand of the two

operands are multiplied using a fixed-point multiplier

and the exponents summed (the extra bias must be

removed in the process). After multiplication the

possibility of a one-bit overflow exists. Handling this

and doing the desired rounding are then completed.

In all our designs the rounding mode implemented is

round to nearest even, which is the default for the

IEEE standard. The sign bit of the result is the XOR

of the operand sign bits. Note that in this and all other

operations described below, the implied ‘1‘ of each

significand is prepended at the outset of the

computation then removed after its completion before

the result is packed into the result word. Figure 6(a)

shows a notional layout of a floating-point multiplier.

It is drawn to reflect the relative sizes of its sub-parts

that the majority of the area is consumed by the

fixed-point significand multiplier when built from

LUTs and flip flops.

Figure 6: Floating Point Unit Floor Plan

Floating-point addition is much more complicated

than multiplication. The first step is to compare the

two operands‘ exponents to determine which is

larger. The significand of the operand with the

smaller exponent is then shifted right dictated by the

difference in exponents. The two matched

significands are then added or subtracted, depending

on the operands‘ sign bits. The result significand is

then normalized to fall within the range by shifting

and the exponent adjusted. Finally, rounding is done

and the result packed into the output word. Figure

6(b), shows a notional layout for a floating point

adder. Note that the exponent matching and

normalization hardware dominate the area resources

of the unit. Since the above adder requires an

adder/subtractor as its core, subtraction of floating-

point numbers is readily incorporated into the above

design at the cost of a few gates‘ logic to determine

when to add and when to subtract the significands.

 A number of methods may be used for floating-point

division in FPGAs. Division by reciprocal

multiplication is discussed in both [1] and [2]. To

accomplish this, the reciprocal of the denominator is

computed via table lookup and then multiplied by the

numerator. An bit significand requires a table with

entries. This is problematic for anything other than

small word sizes. A second approach that uses

repeated multiplications to converge to the reciprocal

of the denominator. In addition, for comparison

purposes we present a restoring array divider design.

The core of this array divider is the significand

divider which consists of a series of stages, one per

significand bit. Each stage consists of a subtractor

and a multiplexor and two registers. As shown Figure

6(c) the array divider consumes the majority of the

circuit area.

5 FLOATING POINT UNIT IP CORE

The floating point IP core is separated into 9 source

files:

1. fpu_double.vhd (top level)

2. fpu_add.vhd

3. fpu_sub.vhd

4. fpu_mul.vhd

5. fpu_div.vhd

6. fpu_round.vhd

7. fpu_exceptions.vhd

8. fpupack.vhd

9. comppack.vhd

5.1 HIERARCHY:

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

43

Figure 7: Hierarchy of various source file

5.2 TOP LEVEL

Figure 8: Top level module of Floating point unit

The input signals to the top level module are the

following:

1. clk (global)

2. rst (global)

2. enable (set high to start operation)

3. rmode (rounding mode, 2 bits, 00 = nearest, 01 =

zero,10 = pos inf, 11 = neg inf)

4. fpu_op (operation code, 3 bits, 000 = add, 001 =

subtract, 010 = multiply, 011 = divide, others are not

used)

5. opa, opb (input operands, 64 bits)

The output signals from the module are the

following:

6. out_fp (output from operation, 64 bits)

7. ready (goes high when output is available)

8. underflow

9. overflow

10. inexact

11. exception

12. invalid

The top level, fpu_double, starts a counter

(count_ready) one clock cycle after enable goes high.

The counter (count_ready) counts up to the number

of clock cycles required for the specific operation

that is being performed. For addition, it counts to 20,

for subtraction 21, for multiplication 24, and for

division 71. Once count_ready reaches the specified

final count, the ready signal goes high, and the output

will be valid for the operation being performed.

fpu_double contains the instantiations of the other 6

modules,

which are 6 separate source files of the 4 operations

(add, subtract, multiply, divide) and the rounding

module and exceptions module. If the fpu operation

is addition, and one operand is positive and the other

is negative, the fpu_double module will route the

operation to the subtraction module. Likewise, if the

operation called for is subtraction, and the A operand

is positive and the B operand is negative, or if the A

operand is negative and the B operand is positive, the

fpu_double module will route the operation to the

addition module. The sign will also be adjusted to the

correct value depending on the specific case.

6 SIMULATION RESULT

The generic and Spartan3-E optimized designs were

similar for the add/sub and multiplier units, with the

optimized designs simply using shift registers and the

18x18 built-in multipliers. The divider units were

fundamentally different from one another. The

significand divider for the generic unit was a

restoring array divider, while the optimized design

used the 18x18 built-in multipliers. The word sizes

tested which show the best performance for the

optimizations presented include 16-bits (9-bit

significand), 23-bits (16-bit significand), and 41-bits

(32-bit significand).

This is due to there being a good match between the

significand size and the width of the available

multiplier blocks in Spartan-3E. In addition, a

standard IEEE 32-bit format was run (23-bit

significand) which shows less benefit due to not as

good a match between significand size and multiplier

block.

 In a configurable computing environment there may

be no special significance to using the standard IEEE

word sizes other than they match what is used on

CPUs, simplifying validation. In many cases,

however, non-standard word sizes may be profitably

employed

Three different versions of each module are

represented — the generic module, an optimized

module which uses both built-in multipliers and shift

registers. Of those area savings, the multiplier and

divider the majority of the area savings was due to

the use of the multiplier blocks

Results of of synthesize and simulation are shown in

figure 9 ,10 and 11.

g

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

44

Figure 9: Synthesize Result of Floating Point unit

Figure 10: Detailed view of Floating point unit after

synthesize

Figure 11: Simulation Result of Floating Point unit

7 CONCLUSIONS

This paper see the effects of new FPGA features like

multiplier blocks and shift registers on the designing

of floating point unit that performs addition,

subtraction ,multiplication and division. And

research shows that area required by Floating point

unit for doing multiplication and division by using

newly added block is much less in comparison to

floating point unit using LUT‘s FF‘s only.

8 REFERENCES

[1] N. Shirazi, A.Walters, and P. Athanas, ―Quantitative

analysis of floating point arithmetic on FPGA-based

custom computing machines,‖ in Proceedings of IEEE

Workshop on FPGAs for Custom Computing Machines, D.

A. Buell and K. L. Pocek, Eds., Napa, CA, Apr. 1995,pp.

155–163.

[2] Behrooz Parhami, Computer Arithmetic, Oxford Press,

2000.

[3] Joseph J. F. Cavanagh, Digital Computer Arithmetic,

McGraw-Hill, 1984.

[4] What Every Computer Scientist Should Know

About Floating-Point Arithmetic, by David Goldberg,

published in the March, 1991 issue of Computing

Surveys. Copyright 1991, Association for Computing

Machinery, Inc., reprinted by permission.

[5] LOW COST FLOATING-POINT UNIT DESIGN

FOR AUDIO APPLICATIONS by Sung-Won Lee

and In-Cheol Park Division of Electrical

Engineering, Department of EECS, KAIST 373-1

Gusong-dong Yusong-gu, Taejon, 305-701, KOREA

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
Volume 2 : Issue 3 [ISSN 2319 – 7498]

Publication Date : 09 September 2013

