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ABSTRACT 
As densities of FPGA are increasing day by day, 

the feasibility of doing floating point calculations 

on FPGAs has improved. Moreover, recent works 

in FPGA architecture have changed the design 

tradeoff space by providing new fixed circuit 

functions which may be employed in floating-

point computations. By using high density 

multiplier blocks and shift registers efficient 

computational unit can be developed. This paper 

evaluates the use of such blocks for the design of 

floating-point units including adder, subtractor, 

multiplier and divider.  

 

 

1. INTRODUCTION: 

Floating-point unit is a part of a computer system 

specially designed to carry out operations on floating 

point numbers. Typical operations 

are addition, subtraction, multiplication, division. 

Floating-point operations are often pipelined. In 

superscalar architectures without general out-of-order 

execution, floating-point operations were sometimes 

pipelined separately from integer operations.  

Over the past few years the use of FPGAs in 

compute-intensive applications has been growing. 

The vast majority of applications have employed 

fixed-point arithmetic due to its smaller size. The key 

advantage of floating-point over fixed-point is its 

ability to automatically scale to accommodate a wide 

range of values using its exponent. Floating-point is 

thus preferred by programmers for non-integer 

computations when it is available on CPUs due to its 

ease of use. However, this scaling behavior comes at 

the cost of reduced accuracy. A 64-bit fixed point 

Representation can have more accuracy (but less 

range) than a 64-bit floating-point representation.  

2. FLOATING POINT UNIT 

ORGANIZATION: 

The FPU chip performs all floating-point functions 

for microprocessor chip set. The FPU has two fully-

pipelined execution units, allowing two floating-point 

mathematical operations and two floating-point 

memory operations every cycle. The FPU register file 

contains 32, 64-bit entries and has eight read ports 

and four write ports. Load and store data queues 

provide a pipelined interface between the IU and the 

FPU, streamlining data flow and minimizing unused 

cycles. The FPU offers peak performance of 300 

double-precision MFLOPS with a clock frequency of 

75 MHz  

The IU places floating-point instructions in the 

floating-point instruction queue in the IU. Each entry 

in the floating-point instruction queue is arranged as 

a quad word. The dispatch mechanism is similar to 

that of the IU: from zero to four floating-point 

instructions can be dispatched by the IU to the FPU 

each cycle. Instructions are dispatched only when the 

FPU has adequate resources available to execute the 

instructions. The floating-point instruction queue 

provides temporary storage for floating-point 

instructions while any dependencies that might 

prevent the floating-point instructions from being 

executed (such as waiting for dependent loads to 

complete, etc.) are cleaned up. 

Floating-point instruction dispatches and floating-

point loads and stores to the data streaming cache are 

controlled by the IU. The IU is responsible for 

generating all address and control signals for 

floating-point loads and stores to the data streaming 

cache. Accesses that miss in the data streaming cache 

and require interfacing to main memory are handled 

by the off-chip cache controller. During these miss 
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cycles, the FPU continues to execute floating point 

instructions already in the queue. 

Once floating-point data is retrieved from the data 

streaming cache, it is placed in the load data queue. 

For store operations, the result is placed in the store 

data queue. As soon as the corresponding address 

information from the tag RAM is available, the data 

is written out to the data streaming cache. Figure 1 

diagrams the floating-point data path. 

 

Figure1:Floating Point data path 

3. CONCEPTUAL OVERVIEW: 

The input operands are separated into their mantissa 

and exponent components. The comparison of the 

operands to determine which is larger only compares 

the exponents of the two operand, so in fact, if the 

exponents are equal then both the input numbers are 

treated equally to populate the registers. 

This is not an issue because the reason the operands 

are compared is to find the operand with the larger 

exponent, so that the mantissa of the operand with the 

smaller exponent can be right shifted before 

performing the addition. If the exponents are equal, 

the mantissas are added without shifting. 

 

 

Figure 2: Conceptual overview of FPU 

4.  FLOATING POINT NUMBERS 

There are several ways to represent real numbers on 

computers. Floating-point representation - the most 

common solution - basically represents real in 

scientific notation. Scientific notation represents 

numbers as a base number and an exponent. For 

example, 123.456 could be represented as 1.23456 × 

10
2
. In hexadecimal, the number 123.abc might be 

represented as 1.23abc × 16
2
. 

Floating-point solves a number of representation 

problems. Fixed-point has a fixed window of 

representation, which limits it from representing very 

large or very small numbers. Also, fixed-point is 

prone to a loss of precision when two large numbers 

are divided. Floating point on the other hand, 

employs a sort of "sliding window" of precision 

appropriate to the scale of the number. This allows it 

to represent numbers from 1,000,000,000,000 to 

0.0000000000000001 with ease. 

 4.1 STORAGE LAYOUT 

IEEE floating point numbers have three basic 

components: the sign, the exponent, and the mantissa. 

The mantissa is composed of the fraction and an 

implicit leading digit (explained below). The 

exponent base (2) is implicit and need not be stored. 

The following figure shows the layout for single (32-

bit) and doubles (64-bit) precision floating-point 

values. The number of bits for each field are shown 

(bit ranges are in square brackets):  
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Figure 3: Layout for single and double bit precision 

floating point values 

4.1.1 THE SIGN BIT 

The sign bit is as simple as it gets. 0 denotes a 

positive number; 1 denotes a negative number. 

Flipping the value of this bit flips the sign of the 

number. 

 

4.1.2 THE EXPONENT 

The exponent field needs to represent both positive 

and negative exponents. To do this, a bias is added to 

the actual exponent in order to get the stored 

exponent. For IEEE single-precision floats, this value 

is 127. Thus, an exponent of zero means that 127 is 

stored in the exponent field. A stored value of 200 

indicates an exponent of (200-127), or 73. The 

exponents of -127 (all 0s) and +128 (all 1s) are 

reserved for special numbers. 

For double precision, the exponent field is 11 bits, 

and has a bias of 1023. 

4.1.3 THE MANTISSA 

The mantissa, also known as the significand, 

represents the precision bits of the number. It is 

composed of an implicit leading bit and the fraction 

bits.  

In order to maximize the quantity of representable 

numbers, floating-point numbers are typically stored 

in normalized form. This basically puts the radix 

point after the first non-zero digit. In normalized 

form, five is represented as 5.0 × 10
0
. 

A nice little optimization is available to us in base 

two, since the only possible non-zero digit is 1. Thus, 

we can just assume a leading digit of 1, and don't 

need to represent it explicitly. As a result, the 

mantissa has effectively 24 bits of resolution, by way 

of 23 fraction bits. 

4.2 DOUBLE PRECISION FLOATING 

POINT NUMBER 

The IEEE 754 standard defines how double precision 

floating point number are represented. 64 bits are 

used to represent a double precision floating point 

number. 

 

Figure 4: Double precision floating point number bit 

format 

 

The sign bit occupies bit 63. ‗1‘ signifies a negative 

number, and ‗0‘ is a positive number. The exponent 

field is 11 bits long, occupying bits 62-52. The value 

in this 11-bit field is offset by 1023, so the actual 

exponent used to calculate the value of the number is 

2^(e-1023). The mantissa is 52 bits long and occupies 

bits 51-0. There is a leading ‗1‘ that is not included in 

the mantissa, but it is part of the value of the number 

for all double precision floating point numbers with a 

value in the exponent field greater than 0. A 0 in the 

exponent field corresponds to a denormalized 

number, which is explained in the next section. The 

actual value of the double precision floating point 

number is the following: 

 

Value = -1^(sign bit) * 2^(exponent – 1023) * 

1.(mantissa) 

 

(1.mantissa) being a base 2 representation of a 

number between 1 and 2, with 1 followed by a 

decimal point and the 52 bits of the mantissa.  

 

For an example, how would the number 3.5 be 

represented in a double precision floating point 

format? The sign bit 63 is 0 to represent a positive 

number. The exponent will be 1024. This is 

calculated by breaking down 3.5 as (1.75) * 2^(1). 

The exponent offset is 1023, so you add 1023 + 1 to 

calculate the value for the exponent field. Therefore, 

bits 62-52 will be ―1000000000‖. The mantissa 

corresponds to the 1.75, which is multiplied by the 

power of 2 (2^1) to get 3.5. The leading ‗1‘ is 

implied in the mantissa but not actually included in 

the 64-bit format. So .75 is represented by the 

mantissa. Bit 51, the highest bit of the mantissa, 

corresponds to 2^(-1). Bit 50 corresponds to 2^(-2), 

and this continues down to Bit 0 which corresponds 

to 2^(-52). To represent .75, bits 51 and 50 are 1‘s, 
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and the rest of the bits are 0‘s. So 3.5 as a double-

precision floating point number is: 

 

 
Figure5: Double precision representation of 3.5 

 

4.3 BASIC FLOATING POINT       

      ARITHMETIC                                                                       

The floating-point multiplier unit is the simplest of 

the arithmetic operations—the significand of the two 

operands are multiplied using a fixed-point multiplier 

and the exponents summed (the extra bias must be 

removed in the process). After multiplication the 

possibility of a one-bit overflow exists. Handling this 

and doing the desired rounding are then completed. 

In all our designs the rounding mode implemented is 

round to nearest even, which is the default for the 

IEEE standard. The sign bit of the result is the XOR 

of the operand sign bits. Note that in this and all other 

operations described below, the implied ‘1‘ of each 

significand is prepended at the outset of the 

computation then removed after its completion before 

the result is packed into the result word. Figure 6(a) 

shows a notional layout of a floating-point multiplier. 

It is drawn to reflect the relative sizes of its sub-parts  

that the majority of the area is consumed by the 

fixed-point significand multiplier when built from 

LUTs and flip flops. 

 
Figure 6: Floating Point Unit Floor Plan 

 

Floating-point addition is much more complicated 

than multiplication. The first step is to compare the 

two operands‘ exponents to determine which is 

larger. The significand of the operand with the 

smaller exponent is then shifted right dictated by the 

difference in exponents. The two matched 

significands are then added or subtracted, depending 

on the operands‘ sign bits. The result significand is 

then normalized to fall within the range by shifting 

and the exponent adjusted. Finally, rounding is done 

and the result packed into the output word. Figure 

6(b), shows a notional layout for a floating point 

adder. Note that the exponent matching and 

normalization hardware dominate the area resources 

of the unit. Since the above adder requires an 

adder/subtractor as its core, subtraction of floating-

point numbers is readily incorporated into the above 

design at the cost of a few gates‘ logic to determine 

when to add and when to subtract the significands. 

 

 A number of methods may be used for floating-point 

division in FPGAs. Division by reciprocal 

multiplication is discussed in both [1] and [2]. To 

accomplish this, the reciprocal of the denominator is 

computed via table lookup and then multiplied by the 

numerator. An bit significand requires a table with 

entries. This is problematic for anything other than 

small word sizes. A second approach that uses 

repeated multiplications to converge to the reciprocal 

of the denominator. In addition, for comparison 

purposes we present a restoring array divider design. 

The core of this array divider is the significand 

divider which consists of a series of stages, one per 

significand bit. Each stage consists of a subtractor 

and a multiplexor and two registers. As shown Figure 

6(c) the array divider consumes the majority of the 

circuit area. 

 

 

5  FLOATING  POINT UNIT  IP CORE 
 

The floating point IP core is separated into 9 source 

files: 

1. fpu_double.vhd (top level) 

2. fpu_add.vhd 

3. fpu_sub.vhd 

4. fpu_mul.vhd 

5. fpu_div.vhd 

6. fpu_round.vhd 

7. fpu_exceptions.vhd 

8. fpupack.vhd 

9. comppack.vhd 

 

5.1 HIERARCHY: 
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Figure 7: Hierarchy of various source file 

5.2 TOP LEVEL 

 

Figure 8: Top level module of Floating point unit 

 

The input signals to the top level module are the 

following: 

1. clk (global) 

2. rst (global) 

2. enable (set high to start operation) 

3. rmode (rounding mode, 2 bits, 00 = nearest, 01 = 

zero,10 = pos inf, 11 = neg inf) 

4. fpu_op (operation code, 3 bits, 000 = add, 001 = 

subtract, 010 = multiply, 011 = divide, others are not 

used) 

5. opa, opb (input operands, 64 bits) 

 

The output signals from the module are the 

following: 

6. out_fp (output from operation, 64 bits) 

7. ready (goes high when output is available) 

8. underflow 

9. overflow 

10. inexact 

11. exception 

12. invalid 

The top level, fpu_double, starts a counter 

(count_ready) one clock cycle after enable goes high. 

The counter (count_ready) counts up to the number 

of clock cycles required for the specific operation 

that is being performed. For addition, it counts to 20, 

for subtraction 21, for multiplication 24, and for 

division 71. Once count_ready reaches the specified 

final count, the ready signal goes high, and the output 

will be valid for the operation being performed. 

fpu_double contains the instantiations of the other 6 

modules, 

which are 6 separate source files of the 4 operations 

(add, subtract, multiply, divide) and the rounding 

module and exceptions module. If the fpu operation 

is addition, and one operand is positive and the other 

is negative, the fpu_double module will route the 

operation to the subtraction module. Likewise, if the 

operation called for is subtraction, and the A operand 

is positive and the B operand is negative, or if the A 

operand is negative and the B operand is positive, the 

fpu_double module will route the operation to the 

addition module. The sign will also be adjusted to the 

correct value depending on the specific case. 

 

6 SIMULATION  RESULT 

 
The generic and Spartan3-E optimized designs were 

similar for the add/sub and multiplier units, with the 

optimized designs simply using shift registers and the 

18x18 built-in multipliers. The divider units were 

fundamentally different from one another. The 

significand divider for the generic unit was a 

restoring array divider, while the optimized design 

used the 18x18 built-in multipliers. The word sizes 

tested which show the best performance for the 

optimizations presented include 16-bits (9-bit 

significand), 23-bits (16-bit significand), and 41-bits 

(32-bit significand). 

 

This is due to there being a good match between the 

significand size and the width of the available 

multiplier blocks in Spartan-3E. In addition, a 

standard IEEE 32-bit format was run (23-bit 

significand) which shows less benefit due to not as 

good a match between significand size and multiplier 

block. 

 In a configurable computing environment there may 

be no special significance to using the standard IEEE 

word sizes other than they match what is used on 

CPUs, simplifying validation. In many cases, 

however, non-standard word sizes may be profitably 

employed 

Three different versions of each module are 

represented — the generic module, an optimized 

module which uses both built-in multipliers and shift 

registers. Of those area savings, the multiplier and 

divider the majority of the area savings was due to 

the use of the multiplier blocks 

 

Results of of synthesize and simulation are shown in 

figure 9 ,10 and 11. 

 
g 
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Figure 9: Synthesize Result of Floating Point unit 

 

 

 

 
Figure 10: Detailed view of Floating point unit after 

synthesize 

 

 
Figure 11: Simulation Result of Floating Point unit 

 

7  CONCLUSIONS  
 

This paper see the effects of new FPGA features like 

multiplier blocks  and shift registers on the designing 

of floating point unit that performs addition, 

subtraction ,multiplication  and division. And 

research shows that area required by Floating point 

unit for doing multiplication and division by using 

newly added   block  is much less in comparison to 

floating point unit using LUT‘s FF‘s only. 

 

8 REFERENCES 

[1]  N. Shirazi, A.Walters, and P. Athanas, ―Quantitative 

analysis of floating point arithmetic on FPGA-based 

custom computing machines,‖ in Proceedings of IEEE 

Workshop on FPGAs for Custom Computing Machines, D. 

A. Buell and K. L. Pocek, Eds., Napa, CA, Apr. 1995,pp. 

155–163. 

[2]  Behrooz Parhami, Computer Arithmetic, Oxford Press, 

2000. 

[3] Joseph J. F. Cavanagh, Digital Computer Arithmetic, 

McGraw-Hill, 1984. 

[4] What Every Computer Scientist Should Know 

About Floating-Point Arithmetic, by David Goldberg, 

published in the March, 1991 issue of Computing 

Surveys. Copyright 1991, Association for Computing 

Machinery, Inc., reprinted by permission. 

[5] LOW COST FLOATING-POINT UNIT DESIGN 

FOR AUDIO APPLICATIONS by Sung-Won Lee 

and In-Cheol Park Division of Electrical 

Engineering, Department of EECS, KAIST 373-1 

Gusong-dong Yusong-gu, Taejon, 305-701, KOREA 

 UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE 
Volume 2 : Issue 3                     [ISSN 2319 – 7498] 

Publication Date : 09 September 2013 


