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Abstract— The paper presents voltage stability margin (VSM) of 

radial distribution network by considering a unique reactive 

loading index without and with distributed generator (DG). It is 

shown that the branch, at which the value of reactive loading 

index is minimum, is considered to be the weakest branch of the 

system. Then, the voltage stability margin (VSM) of the feeder is 

selected heuristically. It is the product of reactive loading indices 

of all branches of the feeder.  The VSM of all feeders can be 

evaluated. The feeder which has the smallest value of VSM can 

be considered as the weakest feeder of the system and is at the 

proximity of voltage collapse. So, for multiple feeders, the voltage 

stability margin of a system may be considered as the VSM of the 

feeder which has the smallest value. The effectiveness of the 

proposed VSM without and with considering DG has been 

successfully tested on a 12.66 kV radial distribution network 

consisting of 33 nodes and the results are found to be in very good 

agreement. 

     

    Keywords— Distributed generators; Reactive loading index; 

radial distribution network; voltage collapse; voltage stability 
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I. INTRODUCTION 
In the deregulated energy market, electric power utilities are 

continuously searching new technologies to provide 

acceptable power quality and reliability to their valuable 

customers. So, electric power utilities are concerned with 

distributed generators (DGs) which include fuel cells, wind 

farm, microturbine, photovoltaic, internal combustion engine 

generators etc.    

DG is a small generator which can operate stand-alone or in 

connection with distribution networks and can be installed at 

or near the load unlike large central power plants. DG ratings 

range from 5 kW up to 100 MW.  Loss reduction and voltage 

improvement are two most important benefits of DG 

installation in distribution networks. 
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  Voltage stability [1, 2] is one of vital criteria that dictate the 

maximum permissible loading of a distribution system [3].  

 

The loads generally play an important role in voltage stability 

analysis and therefore the voltage stability is also known as 

load stability.  

   Voltage collapse [4, 5] may occur in a power system due to 

lost in voltage stability in the system. Voltage collapse is the 

phenomenon of voltage instability that can appear in a 

transmission or distribution system operating under the 

heaviest loading conditions, in which the voltage decreases 

monotonically leading the system to be blackout. While in 

normal operating conditions, small loads increase causes a 

small voltage drop augment, if the entire network or a 

particular node is over a certain critical load level; further 

loads increase causes a fast decrease to zero of the voltage 

which suddenly leads the system to the collapse. Therefore 

voltage stability analysis is important in order to identify 

critical nodes [6] in a power system i.e. nodes which are 

closed to their voltage stability limits and thus enable certain 

measures to be taken by the control engineer in order to avoid 

any incidence of voltage collapse. 

So far the researchers have paid very little attention to develop 

a voltage stability indicator [7-10], for a radial distribution 

network [11-15] in power system. The problem of voltage 

stability [1] may be explained as inability of the power system 

to provide the reactive power [16] or non-uniform 

consumption of reactive power by the system itself. Therefore, 

voltage stability is a major concern in planning and assessment 

of security of large power systems in contingency situation, 

specially in developing countries because of non-uniform 

growth of load demand and lacuna in the reactive power 

management side [16]. Most of the low voltage distribution 

systems [17-20] having single feeding node and the structure 

of the network is mainly radial with some uniform and non-

uniform tapings.  

   Radial distribution systems [21-22] having a low reactance 

to resistance ratio, which causes a high power loss. Hence, the 

radial distribution system is one of the power systems, which 

may suffer from voltage instability. For a low voltage 

distribution system, the conventional Newton-Raphson 

method normally suffers from convergence problems due to 

low 
R

X
  ratio of the branches.  

The current article has been developed a novel and simple 

theory to identify the weakest branch and weakest feeder of a 

radial distribution system without and with considering 

distributed generator (DG) at optimal location. The 
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effectiveness of the proposed idea is then tested on 33 node 

radial distribution system.     

I. BASIC THEORY 
We consider a simple 2-node system as shown in Fig.  1 [23]. 

 

 

Fig 1: A simple 2-node system. 

Here 

SI    sending  end line current 

RI    receiving (load) end line current 

SV           magnitude of source end voltage in per unit 

S   phase angle of source end voltage in degree 

LV   magnitude of  receiving (load) end voltage in per  

               unit 

L   phase angle of receiving (load) end voltage in degree 

LP   real power demands at receiving (load) end bus 

LQ   reactive power demands at receiving (load) end bus 

LS    complex  power 

SZ   magnitude of line  impedance in per unit 

  phase angle of line  impedance in degree 

LZ   magnitude of load impedance in per unit 

   phase angle of load  impedance in degree 

qL   reactive loading index of the branch 

Here a load having an impedance of   LL ZZ


  is 

connected to a source having an impedance of  SS ZZ


. 

If line shunt admittances are neglected, the current flowing 

through the line equals the load current; 
 

From Figure 1, 
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Using simple calculation, we can write load reactive power 

LQ as                                  

   sinsin
2

S

L
SL

S

LS
L

Z

V

Z

VV
Q                                (2) 

The load voltage 
LV  can be varied by changing the load 

reactive power
LQ . The load reactive power 

LQ  becomes 

maximum when the following condition is satisfied.  

0
L

L

dV

dQ
                                                                                (3) 

Now, from (2) and (3)  

  0sinsin2  SL

S

L

V

V
                                         (4) 

Now, at no load, 
L SV V  and

L S  . Therefore at no load, 

the left hand side (LHS) of (4) will be sin . However, at the 

maximum reactive power 
LQ  , the equality sign of (4) hold 

and thus the LHS of (4) becomes zero. 

Hence the LHS of (4) is considered as a reactive loading 

index, 
qL  of the system that varies between sin  (at no load) 

and zero (at maximum reactive power). 

Thus,  

            SL

S

L
q

V

V
L   sinsin2                             (5) 

Here,          0sin  qL                                                   (6) 

II. Voltage stability margin and 
distflow technique of radial 

distribution NETWORK   

 
A distribution network consists of N number of nodes. 

Normally, a number of branches are series connected to form a 

radial feeder in low voltage distribution network. Consider 

branch i , which is connected between nodes p  and q  

(where node p is closer to the source or generator node).  

Now, the impedance SZ  of a branch or line is connected 

between the source and the load nodes for a two node system. 

In this paper  qL  is defined as the reactive loading index of 

the branch. 

reactive loading index  
iqL  of branch i  can be written as    

   sinsin2 
p

q

iq
V

V
L                                 (7)                                                                                                                                                                                                                                                                         

Similarly, the reactive loading index of all other branches of 

the feeder can be determined from (7). 

  G 

LLL VV 

 SS ZZ

 LL ZZ

SI

LI

SSS VV 
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Here, the voltage stability margin (VSM) of the feeder is 

selected heuristically. It is the product of reactive loading 

indices of all branches of the feeder. 

 

 
iqLVSM       where i = 1, 2………..n                                                       

(8) 

Where n is the set of branches constituting the feeder starting 

from source node to ending at end node.  

A typical radial distribution network consisting of root node, 

main line, lateral line, sub lateral line and minor line. So a  

practical radial distribution system may consist of more than 

one feeder. Hence, the VSM of all feeders can be evaluated 

using equation (8) and the feeder which has the smallest value 

of VSM can be considered as the weakest feeder of the system 

and is at the proximity of voltage collapse. So, for multiple 

feeders, the voltage stability margin of a system may be 

considered as the VSM of the feeder which has the smallest 

value.  

In radial distribution system the power flow problem can be 

solved by distflow technique. Consider that the branch i  is 

connected between nodes p and .q  Now the branch i has 

a series impedance of )( SSS jXRZ  .The active and 

reactive power flow through the branch near node p (at 

point m) is iP and iQ respectively and the active and 

reactive power flow through the branch near node q (at point 

n) is 1iP and 1iQ respectively. The active and reactive 

loss of branch i  is given by         
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Hence we can write  
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Here, )( 11   ii jQP is the sum of complex load at node 

q  and all the complex power flow through the downstream 

branches of node q . 

Now, the voltage magnitude at node q  is given by  

2

2222
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SiSipq
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XQRPVV
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         (13) 

The power flow solution of a radial distribution feeder 

involves recursive use of (9) to (13) in reverse and forward 

direction. Now beginning at the last branch and finishing at 

the first branch of the feeder, we determine the complex power 

flow through each branch of the feeder in the reverse direction 

using (9) to (13). Then we determine the voltage magnitude of 

all the nodes in forward direction using (13). 

 

III. RESULTS AND DISCUSSIONS  
The effectiveness of the proposed idea is tested on 12.66 KV 

radial distribution systems consisting of 33-nodes. The single 

line diagram of the 33-node system is shown in Fig. 2 and its 

data is given in [23]. 

 

        

 
 
 
 
 

 

Fig 2: Single line diagram  of a main feeder. 

 
 

The 33-node system (Fig. 2) has four radial feeders, FDR 1, 

FDR 2, FDR 3 and FDR 4. Each feeder (starting from source 

node to ending at end node) has a set of branches which is 

given below. 

 

FDR 1: (1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18) 

FDR 2: (1-2-19-20-21-22) 

FDR 3: (1-2-3-23-24-25) 

FDR 4: (1-2-3-4-5-6-26-27-28-29-30-31-32-33)  

 

The reactive loading index of all branches of 33-node system 

are evaluated using equation (5) and then they are shown in 

Fig. 3 (nominal loading condition only). The investigation 

reveals that the value of reactive loading index qL to be 

minimum in branch 5 (connected between nodes 5 and 6). 

Thus branch 5 can be considered as the weakest branch of the 

system.  

 

The voltage stability margin of all feeders are then evaluated 

using equation (8) and then they are shown in Fig. 4 (under 

nominal loading condition only) and it indicates that FDR 1 

has the lowest voltage stability margin. Thus FDR 1 is 

considered as the weakest feeder of 33-node system. 
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Fig 3: Reactive loading index of all branches of the 33-node system under 

nominal loading conditions. 
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Fig 4: Voltage stability margin of all feeders of the 33-node system under 

nominal loading conditions. 

 

Now, active and reactive loads of all the nodes are increased 

{i.e.,  iPLiPL o.)(   and  iQLiQL o.)(   for 

33.,....................4,3,2i  and  is increased from zero to 

a critical value where voltage collapses.}. When the load of all 

nodes is successively increased, the power flow algorithm 

successfully converged for a load multiplier factor of up to 

3.62071. This point is considered to be the critical loading 

point beyond which a small increment of load causes the 

voltage collapse.  

Here also branch 5 is considered as the weakest branch of the 

system. 

Fig. 5 shows the plot of reactive loading index Vs. load 

multiplier factor    of the weakest branch (branch 5) of 33-

node network under critical loading condition. 
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Fig 5: Reactive loading index of the weakest branch of 33 node system under 

critical loading condition without DG.  

 

Fig. 6 shows the plot of voltage stability margin Vs. load 

multiplier factor    of all feeders of 33-node network under 

critical loading condition. From Fig 6, it indicates that FDR 1 

has the lowest voltage stability margin. Thus FDR 1 is 

considered as the weakest feeder of 33-node system. 
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1 Feeder 1    2 Feeder 2     3 Feeder 3   4 Feeder 4 
 

Fig 6: Voltage stability margin of all feeders of 33 node system under critical 
loading condition without DG. 

 

Now a 400 kW unity power factor distributed generator (DG) 

is inserted at node 15 (optimal location). Then, active and 

reactive loads of all the nodes are increased 

{i.e.,  iPLiPL o.)(   and  iQLiQL o.)(   for 

33.,....................4,3,2i  and  is increased from zero to 

a critical value where voltage collapses.}. When the load of all 

nodes is successively increased, the power flow algorithm 

successfully converged for a load multiplier factor of up to 

4.04434. This point is considered to be the critical loading 
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point beyond which a small increment of load causes the 

voltage collapse.  

Here also branch 5 is considered as the weakest branch of the 

system.   
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Fig 7: Reactive loading index of the weakest branch of 33 node system under 

critical loading condition with DG. 
 

Fig. 7 shows the plot of reactive loading index Vs. load 

multiplier factor    of the weakest branch (branch 5) with 

DG at optimal location of 33-node network. 

Fig. 8 shows the plot of voltage stability margin Vs. load 

multiplier factor    of all feeders of 33-node network with 

DG at optimal location. From Fig 8, it indicates that FDR 4 

has the lowest voltage stability margin. Thus FDR 4 is 

considered as the weakest feeder of 33-node system. 

From Fig. 8, it is seen that with the insertion of distributed 

generator (DG) at node 15, load capability limit of the feeder 

has increased.   

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

1

3

2

Load multiplier factor

V
o
lt
a
g
e
 s

ta
b
ili

ty
 m

a
rg

in
 w

it
h
 D

G

 

1 Feeder 1    2 Feeder 2     3 Feeder 3   4 Feeder 4 
 

Fig 8: Voltage stability margin of all feeders of 33 node system under critical 
loading condition with DG.  

Fig. 7 shows the plot of reactive loading index Vs. load 

multiplier factor    of the weakest branch (branch 5) with 

DG at optimal location of 33-node network. 

Fig. 8 shows the plot of voltage stability margin Vs. load 

multiplier factor    of all feeders of 33-node network with 

DG at optimal location. From Fig 8, it indicates that FDR 4 

has the lowest voltage stability margin. Thus FDR 4 is 

considered as the weakest feeder of 33-node system. 

From Fig. 8, it is seen that with the insertion of distributed 

generator (DG) at node 15, load capability limit of the feeder 

has increased.   
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Fig 8: Voltage stability margin of all feeders of 33 node system under critical 

loading condition with DG.  
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Fig 9: Reactive loading index of the weakest branch of 33 node system under 
critical loading condition without and with DG. 

 

Fig 9 shows the comparison of reactive loading index of the 

weakest branch (branch 5) without and with DGs. From Fig 9, 

it is seen that the profile of the weakest branch has improved 

after inserting DG at node 15.  
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Analysis also reveals that with the insertion of DG, there is a 

significant reduction of power loss in the distribution network. 

(Table I) 

 
Table I: Active power loss of the system without and with DG (nominal 

loading condition) 

Without DGs With DGs (unity power factor DGs) 
DG at node 15= 400 kW  

203 kW 159 kW 

 

IV. CONCLUSIONS 
From the above discussion we conclude that voltage stability 

margin (VSM) by considering a unique reactive loading index 

has been proposed for radial distribution system without and 

with distributed generator (DG). Using this VSM, it is possible to 

compute the weakest feeder in the system. The investigation 

also reveals that, branch 5 can be considered as the weakest 

branch of 33-node system. Hence, with the knowledge of 

reactive loading index, the operating personnel can have a 

sufficient knowledge regarding the weakest branch and 

weakest feeder of the power network. Analysis also reveals 

that with the insertion of DGs, there is a significant reduction 

of power loss in the distribution network. The effectiveness of 

the proposed VSM has been demonstrated on relatively large 

radial distribution systems.   
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