

308

Optimal Design of a Bengali Virtual Keyboard

seeking improved user perception for a better text

entry rate
 (Human Computer Interaction)

Mr. Panthadeep Bhattacharjee

Assistant Professor, School of Computer Engineering

KIIT University

Bhubaneswar, India

panthadeep@gmail.com

Mr. Lalit Kumar Vashishtha

Assistant Professor, School of Computer Engineering

KIIT University

Bhubaneswar, India

lalitkvashishtha@gmail.com

Abstract—In this paper an approach is proposed to derive an

optimal layout of a Bengali Virtual Keyboard and hence forth

seeking the desirable placement of all the keys in that layout

within the constraints of space and the key size, thereby seeking

to improve the text entry rate for an individual with normal

human perception abilities. The approach is partly segmented in

identifying the initial layout to work with, obtained through a

design space exploration technique, which essentially forms an

input to the Optimal Letter Arrangement algorithm. The

algorithm involves a pool of keyboards to start with for each of

which the theoretical text entry rate is evaluated based on Fitts’

hand movement law as the fitness function. The fit keyboards

make a hop to the next generation after which they go through a

randomization phase in letter arrangement and subsequent

fitness evaluation. The unfit keyboards inherit a known layout

and make the subsequent hop. A keyboard stops the procedure

the moment its text entry rate becomes stagnant and pulls itself

out of the pool. In the end the pool becomes empty and the

keyboard having the highest text entry rate from the removed set

of keyboards is chosen after which it is subjected to practical

usage by the users.

Keywords—Virtual keyboard, Fitts’ movement law, Bengali,

optimal, layout.

I. Introduction
A Virtual Keyboard is a software component that allows a

user to enter characters. A Virtual Keyboard can usually be
operated with multiple input devices, which may include a
touch screen, an actual keyboard and a computer mouse. The
available virtual keyboards in Bengali in general do not show
improved performance in terms of the text entry rate. Hence
the importance of producing a virtual keyboard in Bengali
with an improved text entry rate along with the user friendly
layout has been of utmost need. The prominent existing
keyboards in Bengali language like the AVRO keyboard and
also the AVRO online keyboard do not show an encouraging
text entry rate in spite of the fact that it has been one of the
important applications that has been used to type Bengali
letters. Another important application that exists is the Virtual
Bangla Keyboard which has its layout chalked on the

QWERTY layout of English language but it has its own
limitations too. The application provided by Microsoft is
phonetics based. The same disadvantage exists with the
Google translator too with the application being phonetics
based which requires the typing of the English words like ”ka”
“kha”. These limitations would be a hindrance in meeting the
rampaging text entry scenario.

With the target language as Bengali, the design principles
applied in the designing of an English keyboard cannot be
applied with that of a Bengali version. This can be implied
from the fact that in the Bengali script its vowel graphemes are
realized not as independent letters but as diacritics attached to
its consonant letters. It is written from left to right and lacks
distinct letter cases. It is recognizable by a distinctive
horizontal line running along the top of the letters that links
them together. The number of characters in the layout is
evidently more than it is for an English layout. With the
frequent use of conjuncts, a typical Bengali text, a typical
Bengali text requires the usage of a particular set of characters
more as compared to the rest. There are equivalent vowel-
marks as well as adjuncts which have significant involvement
in the writing purpose.

The proposed approach has its root in the design space
exploration technique where at the outset a single cluster of all
the keys are taken in a compact layout to evaluate the
theoretical text entry rate. Further exploration is made for
seeking rate comparison by segmenting into bi and tri cluster
layouts respectively to identify which layout gives a marginal
improvement. The keyboard structure obtained by this process
forms an input to the Optimal Letter Arrangement algorithm
which involves a pool of such keyboards with identical
geometrical structure but uniqueness in letter placing. The
algorithm runs till the pool gets emptied and from the set of
removed keyboards the one which has the highest theoretical
text entry rate is chosen.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

309

II. Exploring Design Space

A. Mono cluster approach
In the mono cluster approach, all the vowels and the

consonants are clubbed together excluding the numerals and
the other keys. By allowing the users to use the layout we are
able to measure the average text entry rate and then try and
better the words per minute count. The practical text entry rate
in this case for a novice user come up to 6.784 wpm(words per
minute).

B. Bi cluster approach
In this approach, the vowels and the consonants are

clubbed in two different groups excluding the numerals and
the other keys. By allowing the users to use the layout we are
able to measure the average text entry rate and try better the
words per minute count as compared to the values obtained in
the mono cluster approach. The practical text entry rate
obtained in this case for a novice user come up to 8.144 words
per minute.

C. Tri cluster approach
In this approach the vowels and the corresponding vowel-

marks are grouped together whereas the consonant cluster is
subdivided into two separate groups separated by the space
key. By allowing the users to use the layout we are able to
measure the average text entry rate and try and better the
words per minute count as compared to the values obtained by
applying the bi cluster approach. The practical text entry rate
obtained in this case for a novice user come up to 10.4799
words per minute.

III. Fitness function measure
The observation based on the tri-cluster approach is based

on the first hand use of the layout as designed. The
arrangement of the letters occupies slightly greater space as
compared to the mono cluster layout with highly improved
results for the novice users. The space occupies however
varies marginally with bi cluster approach but with a better
text entry rate in the later case.

A. Applying the Fitts’ Digraph model for
the Virtual Keyboards
The model predicts user performance by summing the

Fitts’ law movement times (MT) between all digraphs
weighted by the frequencies of occurrence of the digraphs.
The use of Fitts’ law made it possible to estimate performance
in absolute terms. According to Fitts’ hand movement law, the
time taken to type a key say Ki to typing a key say Kj where i
is not equal to j is given by:

 MTij = a + b * ID (1)

Where a and b are the intercept and slope respectively and ID
is the Fitts’ index. We choose a = 0 and b = 1 / 4.9 sec/bit

 ID = log2(Aij / Wij + 1) (2)

The average movement time is defined accordingly as:

 MTavg = ∑∑ MTij * Pij (3)

Where Pij is the probability of occurrence of the letters Ki and
Kj respectively. If both the keys are the same then i will be
equal to j, under such a scenario the following equation holds

 MTi=j = 1 (4)

In case of equation (4) Fitts’ law is not applicable. Here there
is the involvement of the same key so MTij is the time interval
between the current press and the next press. The value is
assumed to be one. Taking the reciprocal of the average
movement time yields the average number of characters per
second, which is transformed into words per minute.

 CPSmax = 1 / MTavg (5)

 WPMmax = (CPSmax * 60) / 5 (6)

Assuming there are five characters in a word.

B. Hick-Hyman’s law
As in Fitts’ law the reciprocal of the Fitts’ slope coefficient

is denoted as b’ while the intercept is denoted as a’. The slope
co-efficient is called the bandwidth and is measured in bits per
second. Bandwidth in this context is the rate at which humans
process choices. The reciprocal of the slope in the Hick-
Hyman law lies in the range 5 to 7 bps. Since the lower bound
is to be searched for, we assume that the slowest choice
processing speed is appropriate, and set b’ = 0.2 seconds per
bit. The response time RT according to this law is given as:

 RT = a’ + b’ * log2n (7)

Where n is the total number of keys in the layout.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

310

C. Calculation methodology

Figure 1. Aij and Wij calculation methodology

IV. Initial observation

Figure 2. Tri cluster layout obtained

A. Initial results
The text entry rate count for an accustomed user turns out

to be 25.18764 words per minute. This rate has been obtained
by applying the Fitts’ hand movement law. In case of novice
users the Hick-Hyman’s law is applied to calculate the
response time. The minimum text entry rate comes out to be
7.1856 words per minute.

Figure 3. Modified tri cluster layout

The results obtained so far is by taking the modified tri

cluster layout into consideration.

B. Final modified layout

Figure 4. The final modified layout which forms an input to the Optimal
Letter Arrangement algorithm

The modified layout is based on the fact that the space and the

vowel-marks are placed centrally due to their frequent access

among the conjuncts as obtained from the digraph probability

results on a Bengali newspaper called Anandabazar Patrika.

The consonants are divided into two separate clusters on either

side of the space. The vowels occupy the final portion while

the special symbols occupy the top segment.

C. Threshold setting criteria
A group of three hundred keyboards each having similar
geometrical layout in accordance with Figure 4 but the co-
ordinates of the letters are unique for each layout. After
executing the theoretical text entry rates for each of those
keyboards on a Anandabazar Patrika corpus it has been
observed that out of three hundred, thirty keyboards posses
a text entry rate of 31.046188 words per minute which
means that a probability of 0.1 existing which is higher
than any other rates produced.

Figure 5. Ten percent keyboards having 31.046188wpm

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

311

The highest text entry rate obtained after testing is
31.65wpm amongst all the keyboards. It is thus inferred that if
a keyboard in course of running of the Optimal Letter
Arrangement algorithm crosses this value it is considered as fit
to make a hop to the next generation. Otherwise a known
layout which on 30 repeated trials manually by users crosses
the limit of 31wpm or more 19 times. Thus, the probability of
an unfit keyboard to attain fitness on inheriting this known
layout is 0.633.

Figure 6. Predefined layout for unfit keyboards to acquire on being passed to
the next stage.

V. Proposed approach

A. Optimal Letter Arrangement
algorithm

 Steps:
 1. Initialize variables

 Set m = 1, sum = 0

 Set tj = 0, roundj = 0

 2. Write the consonants, vowels, vowel-marks, numerals

 in separate files each file consisting of similar type of

 characters.

 3. The pattern of letter arrangement is different for each of

 the keyboards. This happens to be the start up current

 arrangement for each of the keyboards.

 4. For each virtual keyboard Kj j=1……k simultaneously

do

i) Initialization:

a) Kj, loads its current_consonant_arrangement;

b) Kj, loads its current_vowel_mark_arrangement;

c) Kj, loads its current_vowel_arrangement;

d) Kj, loads its current_number_arrangement

 ii) Randomization:

 a) Select two consonants from the consonant set

 randomly and swap the position of the letters between

 them in the layout. This swapping is done only between

 the consonants, both inter cluster as well as intra cluster

 since there are two consonant clusters;

 b)Select two vowel marks from the vowel mark set

 randomly and perform the interchanging of the

 positions. This interchanging is carried out only among

 the vowel marks in the layout;

 c) Select two vowels from the vowel set randomly and

 perform the interchanging of the positions. This

 interchanging is carried out only among the vowels in

 the layout;

 d) Select two numbers from the number set randomly and

 perform the interchanging of the positions. This

 interchanging is carried out only among the numbers in

 the layout;

 increment m;

 iii) Repeat Step 4(ii) until m = 5;

 iv) Initialize the array all_arr[100] ;

 v) Place all the characters which are randomly arranged

 that includes consonants, vowel marks, vowels and

 numbers into all_arr and fill the remaining cells of the

 array with the rest of the characters that comprises the

 remaining keyboard.

 vi) The Keyboard displays itself according to the changed

 consonant, vowel marks, vowels and number

 arrangement.

 vii) for p varying from 0 to 99 in all_arr[100]

 for q varying from 0 to 99 in all_arr[100]

 a) digraph = concatenation of all_arr[p] and

 all_arr[q];

 b) Aij = Euclidean distance between the source key

 all_arr[p] and target key all_arr[q];

 c) if (all_arr[p] == all_arr[q])

 Wij = 0;

 Mij = 1;

 else
 Wij = the width of the target key all_arr[q] in

 the axis of the motion;

 a =0 , b = 4.9;

 Mij = a + b * log2(Aij/Wij + 1);

 end if
 d) count = the frequency of the digraph pattern in

 the whole corpus taken;

 e) Pij= count/length of the corpus;

 f) sum = sum + Pij*Mij ;

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

312

 end for

 end for

 viii)

 a) MTavg = sum;

 b) CPS = 1/MTavg ;

 c) WPM = (CPS*60)/5;

 5. After the end of the whole process, the text entry rates

 for each of the k keyboards in the pool is evaluated say

 w1,w2,……..,wk and thereby a fresh pool of keyboards

 is obtained.

 6. For any keyboard Kj j=1…..k

 if (wj >= 31.046188 wpm) then

 Kj is allowed to pass to the next level of iteration

 carrying the same changed arrangement so that the

 next random change occurs on the current arrangement

 obtained.

 a) current_consonant_arrangement = changed

consonant arrangement;

 b) current_vowel_mark_arrangement = changed

 vowel_mark arrangement;

 c) current_vowel_arrangement = changed vowel

 arrangement;

 d) current_number_arrangement = changed number

 arrangement;

 else
 Kj is subjected to the following changes:

 a) current_consonant_arrangement = pre-

 determined consonant arrangement;

 b) current_vowel_mark_arrangement = pre-

 determined vowel_mark arrangement;

 7. for each Kj where j varies from 1 to 21

 if (wj >= tj)

 if(wj – tj <=0.15)

 roundj++;

 if(roundj == 10)

 Do not pass the keyboard for further

 changes, remove Kj from the pool;

 end if

 end if

 end for

 8. Repeat Step 4 to Step 7 till no more keyboards are left

 in the pool.

 9. Sort all the removed keyboards in descending order

 according to their final theoretical text entry rate and

 select the highest value producing keyboard.

 10. End.

VI. Results

 Obtained layout after the whole process produces a text

entry rate of 32.25217752 words per minute.

Figure 7. Comparison with the AVRO layout with the green curve representing

the rates from AVRO while the blue curve is that of the finally obtained layout.
The dots in the curves are the erroneous points.

Acknowledgment
The authors would like to express sincere thanks to fellow

colleagues for their timely suggestion and advice in bringing
out the desired work.

References

[1] R. William Soukoreff and I. Scott MacKenzie,” Theoretical Upper and

Lower Bounds Typing Speed Using a Stylus and Soft Keyboard ”,
Behaviour & Information Technology, 14,370-379.J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68–73.

[2] Goldberg, D.E. Genetic Algorithms in Search. Optimisation and
Machine Learning, 1989K. Elissa, “Title of paper if known,”
unpublished.

[3] MacKenzie, I.S., and Zhang S.X. The design and evaluation of a high-
performance soft keyboard. CHI 99, ACM Press (1999), 25–31

[4] Sayan Sarcar, Soumalya Ghosh, Pradipta Kumar Saha, Debasis Samanta
IIT Kharagpur, “Virtual Keyboard Design: State of the Arts and
Research Issues“, Proceedings of 2010 IEEE Students’ Technology
Symposium 3-4 April 2010, IIT Kharagpur.

[5] W. L. Dvorak A. Merrick N. L. Dealey and G. C. Ford, “Typewriting
behavior.” Wikipedia.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

