

290

A Novel and Efficient Data Structure to Facilitate

Dictionary Search using Wildcards

Aloke Kumer Saha

Department of Computer Science

and Engineering

University of Asia Pacific

Dhaka, Bangladesh

aloke71@yahoo.com

Bindu Rani Das

Department of Computer Science

and Engineering

University of Asia Pacific

Dhaka, Bangladesh

supriya.rani32@yahoo.com

Khandker Tafiqul Islam

Department of Computer Science

and Engineering

University of Asia Pacific

Dhaka, Bangladesh

kh.tafiqul.islam@gmail.com

Md Ashrafujjaman Mondal

Department of Computer Science

and Engineering

University of Asia Pacific

Dhaka, Bangladesh

babu_ziz007@yahoo.com

Sheikh Muhammad Sarwar

Department of Computer Science

and Engineering

University of Liberal Arts

Dhaka, Bangladesh

sheikh.sarwar@ulab.edu.bd

Sofura Akhter

Department of Computer Science

and Engineering

University of Asia Pacific

Dhaka, Bangladesh

laj.cseuap@gmail.com

Abstract— In this paper, a novel and efficient data

structure named as ‘Augmented Trie’ has been

proposed that can store a large collection of English

words and search them efficiently. The data structure

has been specially designed in a way to facilitate the

search for strings with wildcard characters. Even

though the memory requirement for constructing

‘Augmented Trie’ is higher than simple trie, it does

not become significant as memory allocation has been

performed intelligently using bit masking. By

experimental results we show that the proposed

method of finding patterns with wildcard characters

improves over the existing one by 13.5% (maximum).

Keywords—data structure, algorithm, wildcard

search.

I. Introduction

Wildcard search has become an inevitable feature in
search engines and databases to facilitate the users, who
search with patterns [1] [2] [3]. According to the
problem definition, given a list of strings and a wildcard
pattern a user would like to know how many strings are
there those match the wildcard pattern [4]. A wildcard is
a character that can be used as a substitute for one or
many number of unknown characters in string search and
as a result it increases the flexibility and efficiency of
searches. Wildcard searching has been applied in the
MSN search index [6] and ranking algorithm for listing
the most popular results. Google is also providing
wildcard searching [5]. Moreover, it has also been very

useful in structured peer-to-peer networks and
distributed environments [5]. As it needs less time and
typing to find any word, it is becoming more and more
popular day by day. So, efficient data structures and
reliable algorithms are needed for wildcard searching.
This topic has been quite an important subject of
research in recent years. Most importantly, research is
going on about discovering fast and suitable algorithms,
which tend to use data structures those take less space in
memory.

There is another interesting research area of
recognizing words from human gesture, where wildcard
search can be really useful. When a user wants to input a
word using gestures, the image of the whole word can be
captured after the sequence of gestures is provided. But
some characters of the word can be really hard to
recognize from that image and they remain unknown.
Now, these characters can be treated as wildcards and by
combining with the recognized characters from the
image a pattern can be formed. This pattern can be used
as wildcard search string to find all the possible words in
the dictionary, those could be the intended inputs of the
user. Then the user can choose any of the possible
words. Even a ranking of the words can be provided for
the user.

In this paper, we propose a method for textual
dictionary search, where the search string contains
wildcard characters. Our method is fast and intelligent
enough to reduce the machine time and find all the
words in the dictionary given a pattern. We augmented
the classic trie data structure by adding additional
information for each node and that helped to search the

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

291

dictionary efficiently. We also encoded the additional
information using bit masking, which consumed little
amount of memory for this purpose. By performing our
experiment, we found that it takes less time compared to
the linear scanning method and the existing trie based
method [6].

The paper is divided into 6 sections. The second
section of the paper explores the background ideas
behind wildcard searching. The third part describes our
proposed solution in detailed manner along with our
„Augmented Trie‟ data structure. In the fourth section we
include statistics regarding some test run after the
implementation of our method. Finally, in the fifth
section we describe the fields where it may be
applicable, and how far the idea can be extended. Our
new algorithm is robust and fast in practice.

II. Background

A. Wildcard Search
Searching a string for a specified pattern is called

wildcard search [7]. A wildcard may be an asterisk(*) or
a question(?) mark. An asterisk(*) means empty or
multiple unknown characters and a question(?) mark
means a single unknown character. They can be
substituted using possible letters to make up a word. The
question mark (?) character matches the word that can be
formed by replacing a single character. For example
“hum?n” or “huma?” will produce the result “human”.
An asterisk(*) means multiple or zero replaceable
characters. For example “humanis*”, this will produce
the results like “humanish” , ” humanism” , ”humanist”
, ”humanistic” , “humanistical” , “humanistically”. The
wildcard term can be used in the as a prefix “*umanism”
or as a suffix like “humanis*”. Multiple numbers of
wildcards and a mixture of both types of wildcards are
also allowed as per our problem definition. An example
of this can be “hu*an*?m”.

This type of problem can be solved by constructing a
DFA (Deterministic Finite Automaton), linearly
matching all the strings from a list against the DFA and
finding the possible matches [8]. Many programming
languages and libraries have built in support for these
kinds of pattern matching. They give correct result, but
lacks efficiency when time complexity is considered.

B. Trie

Trie is a tree based data structure that is used to store
a list of strings by using less memory. It was invented by
Edward Friedkin, who defined it as an associative array
for elements which are usually strings [9].

Trie reduces the cost of memory and number of
searches to find a specific word or a string with wild

cards from a database of millions of words. When
implemented in straightforward manner, it is best for
searching for patterns like “Hel*” or “He???”. However,
when a wildcard term is used as prefix such as “*ing”, it
does not work efficiently because a lot of word ends with
“ing”. In this case, the searching resorts to checking all
root-to-child paths until the string “ing” is found. Fig. 1
shows the construction of a trie for a small set of words.

C. Bit masking

Bit masking is a technique that by which we can
work on individual bit of any integer [10]. We can set or
clear a bit. We also can toggle a bit. These are bone by
bit wise operators (AND, OR, XOR). Bit masking
reduces the use of memory.

Figure 1: The construction of atrie using words “Assoc”,

“Algo”,“All”, “Also”, “Tree” and “Trie”.

III. Proposed Method

A. Searching Procedure
In our system, the data structure for storing words

and algorithm to search for a specific pattern is devised

in such a way that:

1) The space needed to store information is

minimal

2) Search space in pruned effectively and

branching factor is reduced when searching for a

pattern with wildcards.

To achieve these effects we have added the following

extra information for each node in the trie to create an

augmented trie:

1) A Boolean mark is stored in a node to denote if a

word can be constructed following the path from

root to this node.

2) An array of n integers, where each of the

integers is 32-bit. Now, each bit of an integer

denotes the presence or absence of a character.

We can set each bit by using the bit masking

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

292

operation mentioned in background section. As

there are 26 characters in English language, a

32-bit integer can be considered enough to store

the state of each letter. Now, if the j
th
 bit of i

th

integer is set as 1 in the in the integer array, then

it can be stated that the j
th
 character is present at

depth i below the current node.

Our searching technique can be described as below:

1. When the dictionary is loaded, the words are

loaded in the trie. At the time of backtracking,

the integer array in each node is updated with

the information for each character c. If c is

located in any of its children‟s sub tree in depth

i, the bit corresponding to letter c if integer i is

set. From Fig. 2 it can be observed that for the

expanded node „L‟ three integers from the

integer array are shown. By inspecting the

content of a[1], it can be observed that the 7
th
,

12
th
 and 19

th
 bits are set as 1, while the others are

set as 0. Alphabetically the 7
th
, 12

th
 and 19

th

characters are „G‟, „L‟ and „S‟ respectively. We

can easily conclude that at one depth below „L‟,

there are nodes containing „G‟, „L‟ and „S‟.

2. The augmented trie can be searched for patterns

with fixed length wildcards, such as „?‟. Suppose

a pattern like „??SOC‟ has to be searched from

the augmented trie shown in Fig. 2. Now, if the

integer array in first level node containing

character „A‟ is examined, it will be found that

there is a node containing character „S‟ at two

level depth from character „A‟. But there is no

node containing character „S‟ at two level depth

from the first level node containing character

„T‟. So, this branch can be pruned easily and

here we can see the efficiency of our augmented

trie.

3) When multiple character wild card (*) is used,

we start scanning from first character till a

wildcard character is found. Let‟s assume that

the i
th
 character is the wild card character.

Suppose, we have a pattern like „AL*O‟ and we

are searching the trie shown in Fig. 2. So, we

already have traversed the nodes „A‟ and „L‟ and

inspecting the childs of „L‟. Now, there are only

two children „G‟ and „S‟ who have „O‟ as their

descendant. We can easily be sure of that by

checking the set bits of „G‟ and „S‟. But, after

inspecting the „L‟ nodes integer array, we can

conclude there is no „O‟ node as its descendant.

Hence, we can prune this branch. Now, if there

is no known character after the wild card

character „*‟, we will have to scan through all

the sub nodes from current node until we reach

to all ending sub nodes. This will happen if we

have to search for a pattern like „AL*‟ from the

trie shown in Fig. 2. In this case we will have to

traverse all the nodes below „L‟ and the resultant

patterns will be „ALGO‟, „ALL‟ and „ALSO‟.

Figure 2. Representation of our proposed „Augmented Trie‟

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

293

B. Detailed data structure
We can find a given word efficiently from normal “trie”.

But for wildcard search algorithm, normal “trie” cannot

be the most efficient choice. That‟s why we have to store

some more information in each node of the “trie” and

create our “Augmented Trie”. Along with the character

of current node and the pointer to all the child nodes, we

have stored a Boolean variable to mark a node as ending

of any string. We have also used an integer array of

length 20 to store the information of the characters those

are present in all the descending nodes of the current

node. The i
th

index stores the information of the

characters those are at i
th

depth from a specific node in

the trie. That helps us to find and any types of wildcard

patterns in an efficient manner. The structure of a node is

as follows:

struct node

{

 char c;

struct node* child[26];

int a[20];

bool en;

 node(char c)

 {

 this->c=c;

 for(int i=0;i<26;i++) child[i]=0;

 for(int i=0;i<20;i++) a[i]=0;

 en=false;

 }

 node()

 {

 c=0;

 for(int i=0;i<26;i++) child[i]=0;

 for(int i=0;i<20;i++) a[i]=0;

 en=false;

 }

};

IV. Experimental Result
We implemented and tested our method on a pc

containing Intel® core™ 2 Quad CPUQ8400 @2.66GHz

with 2 GB RAM. We used a text dictionary [11] of

English words those are commonly used in everyday

language including some common scientific words.

Table 1 shows the timing comparison of our proposed

algorithm and existing best algorithm [6]. In order to test

our method we randomly generated 5000, 10000 and

20000 search queries and calculated the time for our

proposed algorithm and the existing best algorithm to

search the trie built using [11]. It can be easily observed

that the minimum improvement is 11.5% and the

maximum improvement is 13.5% considering time.

From Table II it can be observed that our data structure

and algorithm performs well for individual types of

search queries. In this experiment we used dictionaries

of different word size. We also showed the amount of

memory (in MB) that was consumed to store the

dictionary. It can be said that even if we added some

extra information for each node in the trie, the memory

usage is not that much high. So, we can say that wildcard

searching with our proposed strategy brings a notable

improvement. This strategy does not affect the full word

search. For full word search our algorithm has the time

complexity of a traditional trie.

TABLE I. COMPARISON OF PROPOSED AND EXISTING

ALGORITHMS IN TERMS OF TIME (IN SECONDS)

Number of
Queries

Time

Proposed Existing
[6]

improvement

5000 1.73 2 13.5%

10000 4.36 5 12.8%

20000 7.96 9 11.5%

V. Conclusions

The proposed „Augmented Trie‟ is efficient in wildcard

searching, as it makes the use of simple yet elegant logic

to reduce the search space. By carefully limiting the

maximum distance between two characters during

searching using the maximum distance between those

characters in any words in reference dictionary, we can

prune our search space quite further. Its simplicity can be

exploited in smart phones, where memory can be

extended and memory addressing might be slower. As

the data structure is not quite complicated to maintain;

and once built, it stays constant overtime, leading to the

opportunity of using it in multithreaded applications.

VI. References

[1] D. J. Byrne, J. M. McConaughy, S.-B. Shi, C.-L. Shu, and T. M.
 Tran, “Reverse string indexing in a relational database for wildcard
 searching,” Mar. 6 2001, uS Patent 6,199,062.

[2] R. M. Lane, “Method and apparatus for facilitating wildcard
 searches within a relational database,” Apr. 29 2003, uS Patent
 6,556,990.

[3] S. A. Friedberg, “Lock-free wild card search data structure and
 method,” Dec. 9 2003, uS Patent 6,662,184.

[4] P. Clifford and R. Clifford, “Simple deterministic wildcard
 matching,” Information Processing Letters, vol. 101, no. 2, pp. 53–
 54, 2007.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

294

[5] Y.-J. Joung and L.-W. Yang, “Wildcard search in structured peer-
 to-peer networks,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 11,
 pp. 1524–1540, 2007.

[6] X. Zhou, Y. Xu, G. Chen, and Z. Pan, “A new wildcard search
 method for digital dictionary based on mobile platform,” in
 Proceedings of the 16th International Conference on Artificial
 Reality and Telexistence–Workshops, ser. ICAT ‟06. Washington,
 DC, USA: IEEE Computer Society, 2006, pp. 699–704. [Online].
 Available: http://dx.doi.org/10.1109/ICAT.2006.19

[7] (2006, July) How to use wildcards, by the linux information
 project (linfo). The Linux Information Project. [Online]. Available:
 http://www.linfo.org/wildcard.html

[8] M. Becchi and P. Crowley, “Extending finite automata to
 efficiently match perl-compatible regular expressions,” in
 Proceedings of the 2008 ACM CoNEXT Conference, ser. CoNEXT

 ‟08. New York, NY, USA: ACM, 2008, pp. 25:1–25:12. [Online].
 Available: http://doi.acm.org/10.1145/1544012.1544037

[9] D. E. Willard, “New trie data structures which support very fast
 search operations,” J. Comput. Syst. Sci., vol. 28, no. 3, pp. 379–
 394, Jul. 1984. [Online]. Available: http://dx.doi.org/10.1016/-
 0022-0000(84)90020-5

[10] K. Matz. (2006, June) Atrevida game programming tutorial.
 Atrevida Game Programming Tutorial. [Online]. Available: http://-
 atrevida.comprenica.com/atrtut03.html

[11] K. Atkinson. (2010, December) Kevin atkinson. Sourceforge.
 [Online]. Available: http://wordlist.sourceforge.net/

TABLE II. COMPARISON OF PROPOSED AND EXISTING ALGORITHMS FOR SOME SPECIFIC SEARCH STRING PATTERNS

IN TERMS OF TIME (IN MILLISECONDS)

 Word

Collection

Size

Memory (MB)

Search time for pattern „a*b*c‟

(in milliseconds)

Search time for pattern „*ing‟

(in milliseconds)

Proposed Existing [6] Proposed Existing [6]

50000 23.08 2 10 3 10

100000 46.55 4 10 6 20

200000 93.61 5 20 9 20

236983 111.07 7 40 10 50

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

