

192

A Multi-round Algorithm for Minimum Processor in

Real-time Divisible Load Scheduling

Pegah Razmara

Faculty of Computing Universiti Teknologi Malaysia

 Johor, Malaysia

pegah.razmara@gmail.com

Suriayati Chuprat

Advanced Informatics School (UTM AIS) Universiti

Teknologi Malaysia International Campus

Kuala Lumpur, Malaysia

suria@ic.utm.my

Mimi Liza Abdul Majid

Faculty of Computing Universiti Teknologi Malaysia

 Johor, Malaysia

mimiliza3@gmail.com

Iza'in Nurfateha Ruzan

Faculty of Computing Universiti Teknologi Malaysia

 Johor, Malaysia

aienruzan@gmail.co

Abstract— Using of parallel and distributed system has become

more common. Dividing data is one of the big challenges in this

type of systems. Divisible Load Theory (DLT) is one of the

proposed methods for scheduling data in parallel and distributed

systems. Recent research has applied divisible load theory in real-

time scheduling and has been introduced as an alternative for

multiprocessor scheduling.There are two type of scheduling

algorithm in real-time divisible load theory(RT-DLT) which is

known as single-round and multi-round algorithm. Most studies

in this field are about distributing data in single-round algorithm.

Unfortunately, multi-round algorithms are difficult to analyze

and have received only limited attention in real-time concept. In

this paper, we will determine the minimum number of processors

needed to complete the job by its deadline in multi-round

algorithm. The two algorithms are compared on linear

programming based formulation and result show that multi-

round algorithm can provide a significant improvement on

minimum number of processor needed in comparison with single-

round algorithm.

Keywords: Real-time Scheduling, Divisible Load Theory, Linear

Programming, Single-round algorithm, Multi-round Algorithm

I. Introduction
Divisible Load Theory (DLT) studies a new model of

distributed systems. It assumes that each partition of the

computations is small, and there are no dependencies between

the each part of computations. Therefore, the workload can be

divided into different parts arbitrarily, and these parts can be

executed independently in parallel. The sizes of the load parts

should be adjusted to the speeds of computation and

communication that causes task execution finishes in the

shortest possible time[1].

In other words, DLT seeks optimal strategies to split divisible

loads into chunks/ fractions and send them to the processing

nodes with the goal of minimizing the overall processing

resources and completion time.

These days, many researches were done in DLT theory with

different concept in cluster-based research computing

facilities[2-4] There are two methods for distributing of this

kind of load fractions data among processors. First method is

sending assigned data to each worker's in one-step (single

round). Second, one is sending processor's assigned data in

multi parts (multiple rounds).

Different researches were done in single-round DLT strategy

[5, 6] by some assumptions. One round system with blocking

and non-blocking mode communication [7], system with

different processor available time (SDPAT) [8], non-dedicated

systems [9], and others are some examples of the single-round

investigated models.

Single round strategy is easy to implement but it gives rise to

significant idle time for almost all processors due to a

processor can start computing only after receiving the entire

load fraction assigning to it. In other words, if the application

is data intensive, the processors may face long idle times while

waiting for data transmission[10]. Furthermore, this long idle

time causes to increase execution time and number of

processing nodes.

One way to reduce this idle time is to send the load fraction in

more than one round. Therefore, that processor can begin its

computation earlier in time. In other word, multi-round

strategy reduces the general idle time of the processors at the

end of the load distribution by subdividing the data fractions

more and recurring distributing them [10, 11].This strategy is

more difficult to implement than single one since the root

processor has to perform a large number of operation to

prepare the data for transmission but it cause considerable

improvement in time performance. Also when we have limited

in resource ,memory or buffer size and the data file to be

processed is very large[11]. However, these works only

consider a single task and for online scheduling of multiple

tasks, it could be more challenging [5]. Moreover, deciding the

proper number of processors is one significant challenge in

multi-round strategy.

Recent research[12,13] obtained exact solutions to the

problem of determining the proper number of processors that

must be assigned to a job upon multiprocessor platforms, but it

is not in real-time concept. In other words, they did not

consider deadline in their solution. Therefore, in this paper we

proposed another linear programming (LP) approach to

determine the proper number of processors according to meet

deadline in real-time multi-round algorithm.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

193

This paper is organized as follows. In the next section, we

present task model and system model. In Section III, a

proposed method is presented which includes closed-form

formula for finding the proper number of processors. In

section IV, simulation result of our algorithm is discussed.

Finally, section V gives the conclusions.

II. Task and system model

In this section, we describe task and system model in real-time

divisible load theory, which is used in this research. In this

method, we used client-server topology for network which all

processors are connected to a head processor and the head

processor only schedule tasks and distribute chunks among

workers and does not participate in computation.

In other words, the role of head node is accept or reject

incoming jobs and execute the scheduling algorithm .This

model includes of homogeneous environment, which means

that all processing nodes have the same computational

capacity and all links from head processor to workers have

same bandwidth. This system does not have communication

and computation over heads.

Moreover, it is assumed that data transmission does not

happen in parallel. It means that head processor may be

sending data to at most one worker at any time instant.

However, in different processing nodes computation may

accrue in parallel. Also, the head processors and workers are

preemptive : the head processor completes the scheduling one

job before considering the next job, and each workers

complete computing one chunk of job before moving on to the

other chunk of job that may have been assigned to it [14-16].

In RT-DLT each job is identified by a 3-tuple ()

where >0 is job arrival time, >0 is total data size of the

job, and >0 is job relative deadline.

Table 1. Notations

Notation Description

Total size of data

V Total size of each round

n Number of processors

m Number of rounds

 Job arrival time

 Job deadline

 Time between current instant and deadline

 Communication time

 Computation time

 Workload fraction

 Ready time which is available time for each

worker

 Start time for receiving data from head node

III. Proposed method

In this research, we assume that all processors are available at

same time. Under this model of processor availability, it is

known that the completion time of a job on a given set of

processing nodes is minimized if all the processing nodes

complete their execution at the same instant. In other words, if

some processing nodes complete the processing of a given

workload before others then they will face idle time.

Moreover, in this research we assume that the size of all

rounds is equal. If we change the size of rounds and increase

that, the idle time between each round is increased. If we

decrease the round size, data-transferring time to the previous

processor is decreased, but current processing node is busy

since computation time of previous round is large. For a given

job () and given number of processor,

denote the amount of the workload that is assigned to the i
th

processing node 1 i n.

The primary idea in this algorithm is according to the first

principles. In this algorithm we started out with no processors

and continually added to them until processing the job finished

(line 8 in the pseudo-code), or we specify that it is not possible

to schedule this job by its deadline (line 9).

In greater detail, we are given the total size of the workload

(), the amount of time between the current instant and the

deadline (), the computation time and communication

time which are cluster parameters, and the ready times for

each processor , ,…, in regular order. The minimum

number of processors needed () have been determined,

the fractions allocated to each processor (the ’s), and the

start time at that each processor will begin receiving data from

the head node (the ’s) .

MINPROCS(σ,∆)

1. read numround;

2. minproc ←0 ;

3. σ ← (σ ÷ numround);

4. ∆ ← (∆ ÷ numround);

5. for round=1 to numround do

6. ← ; sum←0; i←1 ; D ← ∆;

7. while (true) do

8. if (sum ≥ 1) break end if

9. if (≥ D) break end if

10. ← (D −) ÷ (σ × (+))

11. ← max (, + (× σ×))

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

194

12. sum←sum+

13. i←i+1

 end while

14. if (sum ≥ 1) then success!!

15. minproc ←max(minproc , i)

 else cannot meet the deadline

17. minproc ← ∞

 end if

18. D ← D + ∆;

 end for

Fig. 1. Computing

The pseudo-code uses some additional variables: numround

which is the number of rounds will be used in this algorithm

,sum which is total portion size of the workload that has

already been allocated to each workers, i that point to and

the number of processors and D which is allocated deadline

for each round. The main body of the pseudo-code is for loop

which count the number of rounds and inside of that is an

infinite while loop which the only exist reason is be one of two

break statements. The break in line 8 shows that we have

allocated the whole job to the exact number of processors and

break execute in line 9 means that it is not possible to execute

this job according to meet this deadline. For example, the

number of processors with the different ready time are not

enough to process the job according to meet its deadline.

If neither break statement executes, which is the faction of

the job that is allocated to processor is calculated. The

value is executed by time unit () for receiving data

fraction from the head node and computing this data for

() time unit. In optimal situation, we would like these

processing nodes complete execution at the job deadline like

time-instant D. Due to may only start receiving data at

time-instant , we need to + + = D and we

calculate value of in line 10.

Once computed the allocated fraction , we can calculate

the time at which may start execution. This time is the

later of ready time and the time at that has received

data. Moreover the head-node is able to transmit the data

fraction to . This computation of is done in line 11.

Moreover, Lines 12 and 13 update the total values of the

workload portion that already has been allocated, and the

processor index, which is considered next. To determine the

final number of processor in algorithm we should select

maximum of them in each round, which is done in line 15.

Furthermore, deadline increase in each round in line 18.

IV. Simulation results
In this section we have presented our simulation experiments

and displayed some of our result and compare that with single-

round algorithm in the same condition. Our experiment were

performed in MATLAB and using linear-programming

solving which is available with MATLAB to solve our LPs.

The outcomes of our experiments are plotted in Figure 2. For

greater detail, we also present the results data in Table 2.

The graph in Figure 2 plot the minimum number of processors

() required to complete a given real-time workload by its

allocated deadline, when this minimum number of processors

is computed by our multi-round algorithm (depicted in the

graphs by red line) and when it is computed by the single-

round algorithm [17] (depicted in the graphs by blue line). As

can be seen in the graphs, typically the performance of our

algorithm is better than single-round algorithm performance

[17].

Fig. 2. Evaluation of produced with increasing data size and cluster

of n=16 processors.

 The graphs in Figure 2 calculate the respective performance

of the two algorithms since the size of the workload is

increased, for 16 processors in cluster platform relatively. The

performance enhancement is presented to be insignificant or

very small for loads with small size; but when the load size

increases, the performance penalty rewarded by the single-

round algorithm[14, 17] becomes more considerable.

For better detail, we presented the minimum number of

processors generated by both algorithms in Table 2.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

195

Table 2. evaluation of produced with increasing datasize and a cluster of

n=16 processors.

The advanced conclusion to be drawn from these experiments

are that the previous single-round algorithm [17] is acceptable

upon clusters in which workloads size are small and/or have

large relative deadlines . In other words, for large size

workloads according to our finding, single-round algorithm

will not be able to execute the job and optimal multi-round

algorithm performs significantly better.

V. Conclusion
In this paper, we have studied scheduling problems in RT-

DLT. Moreover, some of fundamental characteristic in two

models of divisible load scheduling, single-round and multi-

round are presented. In addition, we proposed a multi-round

algorithm that efficiently determines the minimum number of

processors which are required to meet a job deadline and

significantly decrease the number of processor in comparison

with single-round algorithm in the same situation. In other

word, through experimental evaluation, we have shown that

this efficient algorithm significantly improves on the heuristic

approximations proposed in single-round algorithm. As we

mentioned above, designing multi-round algorithms in real-

time concept is complex and less results are available in

literature. In this paper we found a solution for one of them.

There are two other significant challenges in multi round

strategy which are proper number of rounds and scheduling

the last round which in the future research we will be work on

them.

Refrences

 [1] M. Lawenda, "Multi-installment divisible loads scheduling,"
university of technology, 2006.

[2] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "Scheduling real-

time divisible loads with advance reservations," Real-Time
Systems, pp. 1-30, 2012.

[3] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "Efficient real-time

divisible load scheduling," Journal of Parallel and Distributed
Computing, 2012.

[4] A. Mamat, Y. Lu, J. Deogun, and S. Goddard, "An efficient

algorithm for real-time divisible load scheduling," in Real-Time
and Embedded Technology and Applications Symposium (RTAS),

2010 16th IEEE, 2010, pp. 323-332.

[5] T. G. Robertazzi, "Ten reasons to use divisible load theory,"
Computer, vol. 36, pp. 63-68, 2003.

[6] A. Shokripour and M. Othman, "Categorizing researches about

DLT in Ten groups," in Computer Science and Information
Technology-Spring Conference, 2009. IACSITSC'09. International

Association of, 2009, pp. 45-49.

[7] O. Beaumont, A. Legrand, and Y. Robert, "Optimal algorithms for
scheduling divisible workloads on heterogeneous systems," in

Parallel and Distributed Processing Symposium, 2003.

Proceedings. International, 2003, p. 14 pp.
[8] A. Shokripour, M. Othman, and H. Ibrahim, "A new algorithm for

divisible load scheduling with different processor available times,"

Intelligent Information and Database Systems, pp. 221-230, 2010.

[9] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam, "A

new method for job scheduling in a non-dedicated heterogeneous

system," Procedia Computer Science, vol. 3, pp. 271-275, 2011.
[10] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi,

Scheduling divisible loads in parallel and distributed systems vol.
8: Wiley-IEEE Computer Society Press, 1996.

[11] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, "Divisible load

theory: A new paradigm for load scheduling in distributed
systems," Cluster Computing, vol. 6, pp. 7-17, 2003.

[12] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam, "A

method for scheduling heterogeneous multi-installment systems,"
Intelligent Information and Database Systems, pp. 31-41, 2011.

[13] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam,

"New method for scheduling heterogeneous multi-installment
systems," Future Generation Computer Systems, 2012.

[14] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time divisible

load scheduling for cluster computing," in Real Time and
Embedded Technology and Applications Symposium, 2007.

RTAS'07. 13th IEEE, 2007, pp. 303-314.

[15] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Enhanced real-time
divisible load scheduling with different processor available times,"

High Performance Computing–HiPC 2007, pp. 308-319, 2007.

[16] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time divisible
load scheduling with different processor available times," in

Parallel Processing, 2007. ICPP 2007. International Conference

on, 2007, pp. 20-20.
[17] S. Chuprat and S. Baruah, "Scheduling divisible real-time loads on

clusters with varying processor start times," in Embedded and

Real-Time Computing Systems and Applications, 2008. RTCSA'08.
14th IEEE International Conference on, 2008, pp. 15-24.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

