
46

jMAD- A small Java Mobile Agent Development

platform
[Abhishek Yenpure,Dhiraj Patil, Omkar Jadhav, Ajinkya Bhat, Nitin Umesh]

Abstract--Grid Computing has been around for as long as the

modern computers themselves yet have failed in obtaining a

clear standard which would define its implementation across

the computing domain. Our project focuses on the Process

Migration aspects of Grid Computing/Clusters for Java

Applications. The available solutions for Java Process

Migration require high level of Java Expertise for the user

itself let alone the developer. These solutions also require

changes to be made in the JVM (Java Virtual Machine) which

is a hassle for SMEs who cannot afford to put such high level

solutions into work. Our Project Solves the problem by

establishing a Method of Process Migration which will not need

any changes in the JVM and will not require the user to know

the internals of the implemented method. The user will only

have to worry about developing his code remaining totally

aloof of what will be done to it later.

Keywords--JPM,Object Serialization,

CodeInstrumentation,Migration,Broadcast, JVM (Java Virtual

Machine)

I. Introduction

A. Problem
Process Migration is the prime need of fault tolerant

systems running in Grid Environments and Clusters. The
standardization of such concepts and methods used to
achieve the goals of such concepts are very difficult because
of the vividness of the implementations and different
perspectives of the ideas used to implement the same thing
in different environments in terms of technologies
(Languages, Architectures, etc.). In environment
running/developed on languages like C/C++/Fortran the
process Migration is much easier than the new higher level
languages like Java etc.

In Java the main problem is that it does not let you play
around with the process its properties like address spaces
etc. for security purposes and hence said to be running in a
sandbox [3]. Unlike C/C++/Fortran Java does not allow
access to method stacks and Program counters to track the
program. This leads to a problem of Process Capture which
will help in saving the executing process and resurrect it
according to the need of the user.

AbhishekYenpure,DhirajPatil,OmkarJadhav,Ajinkya Bhat,Nitin Umesh
Sinhgad Institute of Technology and Science,University of Pune
India
{abhishek.yenpure@hotmail.com , dhirajpatil.18@gmail.com ,
omkar7272@gmail.com , ajinkya@blog404.com ,
nitinumesh8391@gmail.com}

Hence because of the above problems we needed to
address the Process migration problem in Java. It‟s not that
such a thing was never tried before; the difference is that all
the existing implementations require the implementers to
significantly change the JVM (Java Virtual Machine)
itsimplementation [1]. This leads to another headache of
how the novice users/developers of the system will deal with
a thing highly technical like specifications of JVM/Java
Language with bare minimum resources as in case of a lot of
SMEs.

The Problem is how to migrate the Java Processes
without modifying the JVM in any way and without the user
needing to deal with the technicalities of the implementation
so that he will have to worry only about his own Program its
implementation and not how the system will handle his
program.

In this project we are going to handle the exact need of
the day and will be trying to implement a platform for
development of Mobile Agents to achieve Process migration
in Java using Method Level Granularity.

B. Solution
Java does not allow us to access the address spaces of

the current objects in execution discouraging the system
help for capturing the objects in execution. But however
java provides various inbuilt interfaces which allow us to
store the state of the current executing objects in Files which
may be transferred across systems and can be used to
resurrect the objects and form a part of some other process,
this technique is called as „object serialization‟ and the
interface provided by Java for this is „java.io.externalizable‟.

Having thus solved the problem of savingthe executing
state, tracking of the process can be done using checkpoints.
We can allow the whole process to run between checkpoint
to checkpoint forming executable granular units in the same
method. This will help in resuming the process on other
machine by starting its execution form the checkpoint it had
ended on previously. Checkpoints can be implemented in
the .java file or the .class file of the user the parts of which
are discussed further in section II.A and II.C.

The whole approach provides seamless migration of Java
process running on a cluster only introducing the overhead
at the time of the class load event or the compilation of the
class depending on the approach of the introducing code in
the user files for process capture and tracking (introducing
checkpoints).

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

47

Various performance tests have been done on the already
similar system [1] which our project is based on and the
results were obtained positive thus supporting our take on
the system which would yield in a high performance
implementation of the Grids and Clusters.

C. Scope and Visibility
The project can take a really big scope if we take into

consideration all the parameters of the Grid Process
Implementation and Cluster Application deployment (as you
will find in MOSIX etc.) into account and hence we will be
limiting ourselves to a few select and important aspects of
the implementation as we lack much insight, the major part
of which will be dealing with the Java processes only.

In terms of the visibility of the project we will be able to
deliver whatever we will be promising in the solution to the
problems identified, doing justice to the project topic as well
as the project implementation and its business value.

We will hence be spending time to make our project as
transparent, robust as possible, so for it to become a part of
the new ecosystem of middleware and system software
which will be completely purpose built.

As a part of the commercial feasibility of the project we
will be conducting various performance tests on our
implementation and will be comparing our approach of
implementation with “M-JavaMPI” [1] on which our project
is based on. The project is to introduce us to new
technologies used in industries for application development
like bytecode instrumentation, reflection and introspection,
object serialization apart from all the trivial technical
aspects of the project and will give us an insight of industrial
application development and understanding computing in a
whole new way.

II. Implementation
The way we are going about in the system is by

appointing java code instrumentation before compilation(not
to be confused with Compile time Bytecode
instrumentation) to insert checkpoints to track the progress
of the program and object serialization [2,4,6] for the
storage of objects and other important runtime information,
by appointing Java only features. The developers can gain a
great deal in debugging the system as well as the system will
provide the user with the instrumented code too, unlike the
JVMDI approach used in M-JavaMPI [1].

A. Pre Processor
The pre-processor will use the support of Java

Reflection [2,5,6] to get all the Fields and Methods declared

inside the Program,thus it will help cache all the

variables,objects inside a class, while the user has no need to

write his class to be externalizable,the pre-processor will be

responsible to do that by instrumenting the java code, the

java code will now necessarily need to implement the

methods declared in the interface, hencewe will need to

write the two methods readExternal() and writeExternal()

[4,6] explicitly. These methods will help in the storage of all

the objects in the current java Process.

To write all these objects to the storage, here we will need to

know all those objects by the method

Class.getDeclaredFields()[2,5,6] which returns all the Fields

declared within the class, hence after we know the names

and types of all the objects in the class, we would write them

to the storage by virtue of writeExternal().This will be done

only when the System is overloaded.

These files after storing to the file system will then be sent

to the node which is willing to accept the process form the

current Node and then the accepting node will resurrect all

the objects by using the method readExternal().

The Pre Processor may make the code look really verbose,

but it might not at all put a lot of efforts on the system then

it did earlier.

Apart from just declaring these two methods, thePre-

processor will also be responsible for the insertion of

checkpoints in the program.

B. Object Serialization
Object Serialization [2,4,6] is the Method provided by

java for the storage of objects or synchronization of objects
in the current execution context of the Java Virtual Machine
the technique uses two of java‟s interfaces

 java.io.serializable

 java.io.externalizable

In the above two interfaces externalizable implements
serializable interface too so that whenever the
externalization of object is to be performed, the objects are
serialized and would not require any other mechanism for
locking the objects under externalization. The externalizable
interface provides two methods for the storing and
resurrection of the objects of the classes that implement the
interface. This is necessary that whatever objects are to be
saved need their classes to implement the externalizable
interface of java. This technique will help us to store the
state of the objects currently in the execution.

Figure 2.1. Schematic of the Pre Processor

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

48

C. Checkpointing
The approach for keeping the track of the process during the

execution M-java MPI [1] appoints are the services provided

by the JVMDI (now JVMTI) which gives access to all the

regular program execution parameters (Stack, Program

Counter), but in our approach, we are implementing this

using static variables as checkpoint storage and then using

named blocks/conditional loops for forming one logical

block of execution,. This will enable the original author of

the program to gain transparency into the codes

instrumentation and hence will put him in control again.

III. Architecture

A. Architecture of the System
Based on the system‟s requirement and referring to the

paper “M-JavaMPI” [1] the architecture we see of our

system is somewhat like the Fig. 3.1 The Systems has the

Following basic and predominantly important blocks:

 Pre-Processing Layer

 Migration Layer

 Communicating Layer

The functions of which will be briefed eventually in the

further briefing of the architecture and mechanisms to be

adapted by us in the system implementation.

B. Communication between Nodes
Fig.. 3.2 shows the communication will take place in the

system and what messages will be sent by the nodes.

Initially, each machine communicates all its processor and

memory information/status to all other machines using a

UDP message. Consider machine A from Fig. 3.2, it

broadcasts a UDP message containing the information about

its processor and memory information/status. In response,

the other machines send a UDP message to machine A and

all other Nodes, containing the status of their processor and

memory usage. Machine A stores the status of these

machines in an Index file. From this Index file (in the actual

implementation, we will be using IP-Value pair mapped in a

HashMap in Java Collection interface), it selects the

machine for process migration having the least processor

and memory usage. The information about the Processor and

memory utilization is updated periodically (after every 10

sec say) so that the system can be updated regularly without

over populating the channel and letting resources for

communication by waiting too short but also not letting the

systems change their resource utilization by waiting too

long.

This trade-off between communication times is very

essential because the system cannot be risked for just

communicating and then letting the process to a higher

powerful machine sacrificing its own resources in

communication itself.

C. Migration Initiation
Fig. 3.3 describes the initiation of process migration.

Now depending on the entries made in the Index file of

machine A, the machine having the lowest value in terms of

its status (processor and memory usage) is chosen. After

getting the machine to migrate, the object saving process

begins with object serialization. As described earlier the

object Serialization is responsible for the saving of the

objects of all the classes on the current running process. It‟s

necessary to track all the possible classes the process is

going to refer to before actually running the process so that

proper provisions could be made so that the objects of those

classes are saved and sent with the process to the other end

and will not throw any run time exceptions on the other

machine. Figure 3.1 Architecture of the System

Figure 3.2. Communication between Nodes/Prres

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

49

This we intend to do with the concepts of Reflection and

Introspection in java. The addition of the pre-processor layer

will ease the things by changing the program of the user

sufficiently so that the problems of referencing are solved by

us completely. The Fig. 3.4 shows the schematic of what

was said previously about the referencing problem of the

objects of other classes in the

process.This approach is convenient in one way by

establishing the channel between the main() methods of the

two machines for the resurrection process as the objects in

the main can be stored and forwarded and by using special

communication protocols the main() methods can

communicate with each other and then form the objects

explicitly without resurrecting them but by querying the

objects of the other main() method however this may have

various network and security issues to be dealt with,

incurring extra cost on the system.

This is also needed to be known that we are dealing

with granularity as a certain block of statements and not at a

statement level unlike M-JavaMPI [1] because without the

support of JVMDI (now JVMTI) it is not possible to achieve

that, and to a certain extent, it keeps the development of our

proposed system a bit low in terms of complexity.

This also frees us from the worry of capturing the

intermediate results of the statement execution and storing

them too while we try to migrate, hence instead letting the

group of statements form that set run on the system and do

all the changes to all the objects that occur in that block and

then store them and migrate which reduces the system

overhead for doing unnecessary thing than executing what is

important in our perspective.

This ultimately benefits the node over which the execution

is being shifted by reducing the no of statements that it

requires to execute. Also bytecode instrumentation if not

done properly give rise to a whole new class of exotic errors

and exceptions, making our approach a bit more secure too.

D. Migration Exchange
Fig. 3.5 objects that are to be saved by serialization are

saved in the files by using the writeExternal() [2,4,6]

method specified in the java.io.externalizable interface. The

argument to the method is the ObjectOutput which is an

interface implemented by the ObjectOutputSteram class so

that the Objects can be stored in the files. After all those

prerequisites of saving the object files, the files are sent to

the other machine for resurrection, which is done by the

method of readExternal() [2,4,6] method specified in the

java.io.externalizable interface. After the resurrection of all

the objects, the process could finally start the execution once

again. Fig... 3.5 can be described as; machine A sends the

object state file to the (chosen) machine B. Machine B

resurrects the objects and then begins the execution of the

process from the last saved checkpoint. After completion of

the process, the updated object state file is sent back to the

parent machine A.

Figure 3.3 Initiation of Migration

Figure 3.4 References in class with the main() Thread Figure 3.5Steps involved in migration of Process

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

50

IV. Conclusion
The Technology we are trying to develop might lead

to significant changes in the paradigm of mobile agent

development where the applications will be developed

without bothering about the Process Migration but will be

instrumented for additional functionalityand willyield

ingreat load distribution/balancing by making the

application into a Mobile Agent.

V. Future
After sufficient tests for the initial deployment we

plan to make a library out of our project just like some well-

established libraries such as JADE, and we are also planning

to carry this project further as an Android Hypervisor for

running huge tasks on Handheld devices.

References
[1] Ricky K. K. Ma, Cho-Li Wang, and Francis C.M. Lau. “M-JavaMPI:

A Java-MPI Binding with Process Migration Support” presented at
Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium

[2] Herbert Schildt “Java 2:The Complete Reference” , Tata McGraw
Hill,2002

[3] Oracle Technology Network,” Java Language and Virtual Machine
Specifications”, Internet: “http://docs.oracle.com/javase/specs/”.

[4] http://www.jusfortechies.com, Object Serialization,Internet:
http://www.jusfortechies.com/java/core-java/externalization.php, [Sep
18,2012]

[5] Reflection in Java, Internet :
“radio.javaranch.com/val/2004/05/18/1084891793000.html”

[6] JAVA 2 SE 7 Documentation(Oracle Java Documentation),
Internet : “http://docs.oracle.com/javase/7/docs/api//”

About Author (s):

AbhishekYenpur

e

“jMAD –A small java Mobile Agent

Development platform” is being

researched and developed by us on part

of our graduation project, and I am

honored to bring our research to all the

readers.

M NitinUmesh

Working on lower layer modules, close

to the system was very interesting and

challenging. I am very privileged to be

a part of the jMAD team. I hope it

contributes to the Grid Computing and

Mobile Agents paradigm.

AjinkyaBhat

Working on the Cluster Computing

phenomena has been a learning

experience. Though we faced many ups

and downs, we always came up with

amazing solutions.

DhirajPatil

Being the part of jMAD team, I am

highly obliged to present our paper in

this prestigious platform. I personally

enjoyed working on the communication

module of our project.

OmkarJadhav

It has been an exciting experience

working on the Migration module of

this project and a sheer pleasure being a

part of this jMAD team.

 UACEE International Journal of Advances in Computer Science and its Applications – IJCSIA
 Volume 3 : Issue 2 [ISSN 2250 – 3765]

Publication Date : 05 June 2013

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10335

