
A Novel Approach for Introducing Advanced

Security in Mobile Agents

Rajan Sahota
1
, Ankur Chauhan

2
, Priya Suneja

3

Abstract -Mobile agents can travel autonomously

through a computer network in order to perform

some computation or gather information on behalf of

a human user or an application. With the concept of

mobile agent, the execution process will go to the

place where the data are available, data will not send

to the place of execution process. However, it has not

become popular due to some problems such as

security, fault tolerance etc. The fact that computers

have complete control over all the programs makes it

very hard to protect mobile agents from untrusted

hosts. So, the issue of protecting a mobile agent from

a malicious host is a more difficult problem than

protect a host from a malicious agent. This paper

proposes advanced security model for the mobile

agent security against malicious hosts by combining

few techniques so that it can provide a better

solution.

Keywords: security, mobile agents, mobile code,

malicious host.

I. INTRODUCTION

Today so many computer networks are

connected to each other and spreading all over the

world, and we can use various distributed computer

resources through the computer networks. However,

when a user tries to use these resources, he has to

understand the location of distributed resources,

predict their current status, and select some suitable

resources. Mobile agent technologies are getting

popular as means for an efficient way to access to

remote resources on computer networks. Mobile

agents, in these technologies, are processes that

migrate from a server to server in the network

autonomously to achieve user’s requests. The user

using mobile agents can get result of request without

any knowledge about the network environment.

Usage of mobile agents also brings in achievement of

load balancing in whole the network by agent

migration [2].

Mobile agents are composed of code, data, and

state. Agents migrate from one host to another taking

the code, data and state with them. The state

information allows the agent to continue execution

from the point where it was before it left in the

previous host [3].

However, one of the main technical obstacles to

a wider acceptance of the mobile agent paradigm is

security. Achieving security is fundamental for the

successful deployment of mobile agent systems,

especially in the electronic commerce area [1].

Sander and Tschudin present two types of security

problems that must be solved [4]. The first is host

protection against hostile agents. The second is agent

protection against hostile hosts. Many techniques

have been developed for the first kind of problem,

such as access control, password protections, and

sand boxes, but the second problem appears to be

difficult to solve. Yee proposed an approach that uses

a secure coprocessor that executes critical

computations and stores critical information in secure

registers [5].

The rest of the paper is organized as follows.

Section 2 deals with various security issues in mobile

agent paradigm, Section 3 deals with the malicious

host problem which can be caused by spying the

code, data or state of the mobile agent by malicious

hosts, Section 4 gives an overview of the main

solutions for keeping a mobile agent secure against

malicious hosts such as code obfuscation, partial

result encapsulation etc. Section 5 gives architecture

of novel approach; Section 6 gives experimentation

and results. Finally Section 7 gives conclusions and

future work.

II. SECURITY ISSUES IN MOBILE AGENT

PARADIGM

Different security requirements that the mobile agent

paradigm needs to satisfy [22]:

a) Confidentiality

It is important to ensure that the information

carried by a mobile agent or stored on a platform is

accessible only to authorized parties. This is also the

case for the communication among mobile agent

paradigm components.

139

 UACEE International Journal of Advances in Computer Networks and its Security – IJCNS

 Volume 3 : Issue 2 [ISSN 2250 – 3757]

Publication Date : 05 June 2013

b) Integrity

It is essential to protect the mobile agent's code,

state, and data from being modified by unauthorized

parties. This can be achieved either by preventing or

by detecting unauthorized modifications.

c) Availability

Platforms typically face a huge demand for

services and data. In the case that a platform cannot

meet mobile agents' demands, it should notify them

in advance.

d) Accountability

Platforms need to establish audit logs to keep

track of all visiting mobile agents' actions in order to

keep them accountable for their actions. Audit logs

are also necessary when the platform needs to

recuperate from a security penetration or a system

failure.

e) Anonymity

As mentioned above, platforms need to keep

track of mobile agents' actions for accountability

purposes. However, platforms also have to balance

between their needs for audit logs and mobile agents'

needs to keep their actions private.

III. THE MALICIOUS HOSTS PROBLEM

Malicious host’s problem is a commonly

agreed security issue in the area of agent security. In

the mobile agent paradigm, the hosts have full control

over the mobile agents running in them, which no

longer works for them like that in the traditional

computer system. Some of the attacks that could be

performed by malicious hosts to the mobile agents,

which are totally controlled by them [6]:

a) Spying

Spying focuses on understanding the code, data

and network communication of the mobile agent. It is

called spying attack fast-spying if the environment

has no knowledge of whether the agent has been

spied. Otherwise, it is called tardy-spying.

b) Thieving And Pirating

Based on successful spying, the host could either

steal data (thieving) or pirate code (pirating) from the

agent.

c) Manipulation

Based on successful fast-spying, the host could

modify the code, data, and network communication

of a mobile agent or return wrong system call result

without being known by the agent’s environment.

IV. TECHNIQUES FOR MOBILE AGENT

PROTECTION

For wide scale application, the approaches to protect

an agent can be broadly classified into two main

mechanisms [7]:

 Detection mechanism attempt to detect

unauthorized modification of code, state or

execution of mobile agent.

 Prevention mechanisms try to make it impossible

to access or modify code, state or data in a

manner that is meaningful to the perpetrator.

a) Code Obfuscation

Obfuscation is a technique in which the mobile

code producer enforces the security policy by

applying a behavior-preserving transformation to the

code before it sends it to run on different platforms

that are trusted to various degrees [8,23]. Obfuscation

aims to protect the code from being analyzed and

understood by the host. Consequently, the host

should not be able to modify the mobile code's

behavior or expose sensitive information that is

hidden inside the code such as a secret key, credit

card number, or bidding limits [8].

Typically, the transformation procedure that is

used to generate the obfuscated code aims to make

the obfuscated code very hard to understand or

analyze by malicious parties. There are different

useful obfuscating transformations [17,20,21,24].

Data Obfuscation concentrates on obfuscating the

data and data structures in the code without

modifying the code itself.

Hohl [18] suggested using the Obfuscation

technique to obtain a time limited black box agent

that can be executed safely on a malicious platform

for a certain period of time but not forever. D'Anna et

al [8] pointed out that Obfuscation could delay, but

not prevent the attacks on agent via reverse

engineering. They also argue that an attacker with

enough computational resources, such as enough

time, can always de-obfuscate the code. Barak et al

[19] studied the theoretical limits of Obfuscation

techniques and showed that in general achieving

completely secure.

The main advantages of this technique includes

flexibility and low cost. This technique has number

of drawbacks, in this every transformation introduce

extra cost in memory and computation time necessary

to execute the obfuscate program.

b) Partial Result Encapsulation

Partial Result Encapsulation (PRE) is a detection

technique that aims to discover any possible security

breaches on an agent during its execution at different

platforms. PRE is used to encapsulate the results of

agent execution at each visited platform in its travel

path. The encapsulated information is later used to

verify that the agent was not attacked by a malicious

platform. The verification process can be done when

the agent returns to its home platform or at certain

intermediate points in its itinerary.

140

 UACEE International Journal of Advances in Computer Networks and its Security – IJCNS

 Volume 3 : Issue 2 [ISSN 2250 – 3757]

Publication Date : 05 June 2013

To ensure the confidentiality of its results, the

agent encrypts the results by using the public key of

its originator to produce small pieces of cipher text

that are decrypted later at the agent's home platform

using the corresponding private key. This is one

scenario of PRE where the agent itself does the

encapsulation process. The agent uses a special

implementation of encryption called "Sliding

Encryption" that was suggested by Young and Yung

[9]. Sliding Encryption encrypts small amounts of

data within a larger block and thus obtains small

pieces of cipher text. Sliding Encryption is

particularly suitable for certain application where

storage space is valuable such as smartcards [10].

Yee [15] suggested "Partial Result

Authentication Code" (PRAC), where again the agent

does the encapsulation of the results. However, the

agent's originator also takes part in this scenario by

providing the agent with a list of secret keys before

launching it. For each visited platform in an agent's

itinerary, there is an associated secret key. When an

agent finishes an execution at a certain platform in its

itinerary, it summarizes the results of its execution in

a message for the home platform, which could be

sent either immediately or later. It is important to

note that the agent erases the used secret key of the

current visited platform before its migration to the

next platform. Destroying the secret key ensures the

"forward integrity" of the encapsulation results.

Forward integrity [15] guarantees that no platform to

be visited in the future is able to modify any results

from the previously visited platforms, as there is no

secret key to compute the PRAC for these results.

Karjoth et al [16] proposed a "strong forward

integrity", which, in addition to forward integrity,

also requires that the visited platform cannot later

modify its own results. Karjoth et al's approach

depends on the visited platform doing the

encapsulation process instead of the agent doing it.

The visited platform encrypts the agent's results by

using the originator's public key to ensure the

confidentiality of the results [16].

The PRAC technique has a number of

limitations. The most serious occurs when a

malicious platform retains copies of the original keys

or key generating functions of an agent. If the agent

revisits the platform or visits another platform

conspiring with it, a previous partial result entry or

series of entries could be modified without the

possibility of detection.

c) Execution Tracing

Execution tracing [11] is a technique for

detecting unauthorized modifications of an agent

through the faithful recording of the agent's behavior

during its execution on each agent platform. The

technique requires each platform involved to create

and retain a non repudiatable log or trace of the

operations performed by the agent while resident

there, and to submit a cryptographic hash of the trace

upon conclusion as a trace summary or fingerprint. A

trace is composed of a sequence of statement

identifiers and platform signature information. The

signature of the platform is needed only for those

instructions that depend on interactions with the

computational environment maintained by the

platform. For instructions that rely only on the values

of internal variables, a signature is not required and,

therefore, is omitted.

This technique gives all information about path

of code. It helps to analysis the performance of code

in individual host. The approach has a number of

drawbacks, the most obvious being the size and

number of logs to be retained, and the fact that the

detection process is triggered occasionally, based on

suspicious results or other factors.

d) Environmental Key Generation

Environmental Key Generation [12] describes a

scheme for allowing an agent to take predefined

action when some environmental condition is true.

The approach centers on constructing agents in such

a way that upon encountering an environmental

condition (e.g., string match in search), a key is

generated, which is used to unlock some executable

code cryptographically. The environmental condition

is hidden through either a one-way hash or public key

encryption of the environmental trigger.

The technique ensures that a platform or an

observer of the agent cannot uncover the triggering

message or response action by directly reading the

agent’s code.

e) Computing With Encrypted Functions

The goal of Computing with Encrypting

Functions [13] is to determine a method whereby

mobile code can safely compute cryptographic

primitives, such as a digital signature, even though

the code is executed in untrusted computing

environments and operates autonomously without

interactions with the home platform. The approach is

to have the agent platform execute a program

embodying an enciphered function without being

able to discern the original function; the approach

requires differentiation between a function and a

program that implements the function. Essentially,

the problem the author would like to solve is the

following: agent's program computes some function

f, and the host is willing to compute f (x) for the

agent, but the agent wants the host to learn nothing

substantive about f . The protocol presented works in

141

 UACEE International Journal of Advances in Computer Networks and its Security – IJCNS

 Volume 3 : Issue 2 [ISSN 2250 – 3757]

Publication Date : 05 June 2013

the following way, where E is some encryption

function:

 The owner of the agent encrypts f.

 The owner creates a program P(E(f)) which

implements E(f) and puts it in the agent.

 The agent goes to the remote host, where it

computes P(E(f)) (x), and returns home.

 The owner decrypts P(E(f))(x) and obtains f(x).

Strength of security is directly proportional to

strength of encryption function. It is best suitable

technique for application which requires high

security. However this approach has a serious

drawback: no information about the encrypted

computation must leak to the host and only originator

may receive any output.

V. NOVEL APPROACH FOR SECURITY

We are proposing a security model for making

our agent more secure as it is using both the

techniques of cryptography and obfuscation for its

protection. The working of this model is shown in

Fig.1 as flow of agent from host to remote server and

vice-versa. The following are some useful points

which we get from proposed model:

a) If the attacker is able to get the code of the

agent, he will look for the private data which is been

encrypted. So this data is protected as far as he

compromised the secret keys.

b) On obfuscating the whole agent code, it will

make it more difficult for the attacker to understand

the code also obfuscation makes private data look

more ordinary. So, it will take attacker much more

time to crack the agent and its private information.

Fig.1: Architecture of proposed security model

The various steps of proposed model are given

below:

1. The Master agent instantiates the Slave1 and

Slave2 agents.

2. The Slave1 agent’s code is obfuscated using

obfuscator and then dispatched to remote server

for retrieving the secret data from the file stored

on remote server.

3. The Slave1 agent encrypts the secret data using

the encryption algorithm used.

4. Then Slave1 agent returns back to the home with

decrypted data.

5. At home it passes the encrypted information to

the agent Slave2.

6. After getting the message from Slave1 agent,

Slave2 agent decrypts the results back to original

form and starts processing.

VI. EXPERIMENTATION AND RESULTS

The mobile agent system used in this paper is

aglet software development kit (ASDK) 2.0.2. Aglets

software development kit was originally developed at

IBM Tokyo Research Laboratory. When the

installation process is done, we can run the Aglets

server called Tahiti which prompts for login name

and password which we can use default values given

in manual.

Some experimental results are shown below:

a) The execution time on protected agents is 40%

higher than the execution of unprotected agents

on average.

Number of

Host

2 4 8

Encrypted

Agent

17500 32400 46200

Unprotected

Agent

11050 22500 33800

Table 1: Execution time for number of hosts

b) Rate of successful Iterations increases nearly

50% with the help of proposed security model.

No.of

Iterations

2 4 6 8

Protected

Agent

45 57 65 80

Unprotected

Agent

20 30 35 38

Table 2: Successful Iterations in Protected and

unprotected Agents Systems

c) The proposed model increases the size of

program code because it uses both data cryptography

142

 UACEE International Journal of Advances in Computer Networks and its Security – IJCNS

 Volume 3 : Issue 2 [ISSN 2250 – 3757]

Publication Date : 05 June 2013

technique and code obfuscation but the failure rate is

greatly reduced by this proposed model so, we can

neglect that in case of complex applications.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents some of the main issues in

the security of mobile agents against attack from

malicious host. This paper presents the most

important techniques for providing security in mobile

agent systems. We concluded that none of the

existing techniques provides an optimal solution for

all scenarios. However, a combination of various

techniques may yield powerful solutions. So, we

proposed a hybrid security model that revolves

around the security of agent’s code, data and itinerary

from malicious execution environment.

In future, a more advanced cryptographic

technique can be applied, so that the mobile agent’s

data can be made more secure while migrating from

one host to another. This solution addresses most of

the problem but still it is very much dependent on the

complexity of the algorithm used and the possibility

that how soon the professional hacker can de-

obfuscate the program. It still does not address the

problem of denial of service.

REFERENCES

[1] A. Corradi, R. Montanari,” Security Issues in mobile agents

Technology”, IEEE Internet Computing, Vol. 1, 1999.

[2] T. Taka Tadanori, M. Takashi Watanabe,” A Model of

mobile agents Services Enhanced for Resource Restrictions
and Security”, IEEE Internet Computing, 1995.

[3] H. Lee, ”The Use of Encrypted Functions for mobile agent

Security”, Proceedings of the 37th Hawaii International
Conference on System Sciences, 2004.

[4] T. Sander, C. Tschudin, “Protecting mobile agents Against

Malicious Hosts”, In G. Vigna, editor, mobile agent Security,
pages 44–60. Springer Verlag: Heidelberg, 1998.

[5] B. Yee, ”Using Secure Coprocessors”, PhD thesis, Carnegie

Mellon University, 1994.
[6] X. D. Guan, Y. L. Yang, and J. Y. You, “POM - A Security

Model against Malicious Hosts”, DCTC Tech Report, IEEE

Computer Society, Shanghai Jiaotong Univ. Dec. 2000.
[7] N. Karnik, “Security in mobile agent Systems” PhD Thesis,

Department of Computer Science and Engineering,

University of Minnesota, 1998.
[8] L. D'Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and

P. LeBlanc, "Self- Protecting mobile agents Obfuscation

Report", Network Associates Laboratories, June 2003.

[9] A. Young, M. Yung, "Encryption Tools for mobile agents:

Sliding Encryption," In: E. BIHAM (ed), Fast Software

Encryption, Springer-Verlag, Germany, 1997.
[10] G. Karjoth, J. Posegga, "Mobile agents and Telcos'

Nightmares," Annales des Telecommunications VoL 55,

No. 7/8, 29-41, 2000.
[11] G. Vigna, "Protecting mobile agents Through Tracing,"

Proceedings of the 3rd ECOOP Workshop on Mobile

Object Systems, Jyvalskylä, Finland, June 1997.
[12] J. Riordan, B. Schneier, “Environmental Key Generation

Towards Clueless Agents,” G. Vinga (Ed.), Mobile agents

and Security, Springer-Verlag, Lecture Notes in Computer

Science No. 1419, 1998.
[13] Yan Li, Min Fu, Lina Yu, “E-Commerce Security Model

Construction Based on Mobile Agent”, IEEE International

Conference on Networking and Digital Society, 2010.
[14] V. Roth, "Secure Recording of Itineraries Through

Cooperating Agents," Proceedings of the ECOOP

Workshop on Distributed Object Security and 4th Workshop
on Mobile Object Systems: Secure Internet Mobile

Computations, pp. 147-154, INRIA, France, 1998.

[15] B. Yee, "A Sanctuary for mobile agents," DARPA
Workshop on Foundations for Secure Mobile Code, Feb.

1997.

[16] G. Karjoth, N. Asokan, and C. Glc, "Protecting the
Computation Results of Free- Roaming Agents", Second

International Workshop on mobile agents, Stuttgart,

Germany, Sep. 1998.
[17] G. Wroblewski, "General Method of Program Code

Obfuscation", PhD Dissertation, Wroclaw University of

Technology, Institute of Engineering Cybernetics, 2002.
[18] F. Hohl, "Time Limited Blackbox Security: Protecting

mobile agents from Malicious Hosts," To appear in mobile

agents and Security Book edited by Giovanni Vigna,
published by Springer Verlag 1998.

[19] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.

Sahai, S. Vadhan, and K. Yang, "On the (Im)possibility of
Obfuscating Programs," in Advances in Cryptology,

Proceedings of Crypto'2001, Lecture Notes in Computer
Science, Vol. 2139, pages 1-18.

[20] G. Hachez, "A Comparative Study of Software Protection

Tools Suited for Ecommerce with Contributions to
Software Watermarking and Smart Cards," Universite

Catholique de Louvain, 2003.

[21] C. Collberg, C. Thomborson, and D. Low, "A taxonomy of
obfuscating transformations," Technical Report 148,

Department of Computer Science, University of Auckland,

July 1997.
[22] W. Jansen, T. Karygiannis, "Mobile agent Security," NIST

Special Publication 800-19, National Institute of Standard

and Technology, 2000.

[23] Wayne A. Jansen, “Countermeasures for Mobile Agent

Security” March 01, 2010.

[24] S. Armoogum, A. Caully,” Obfuscation Techniques for
Mobile Agent code confidentiality”, March 2010.

[25] S. Srivastava, G.C Nandi, ” Detection of Mobile Agent’s

blocking in Secure Layered Architecture”, IEEE
International Conference on Communication Systems and

Network Technologies, 2011.

143

 UACEE International Journal of Advances in Computer Networks and its Security – IJCNS

 Volume 3 : Issue 2 [ISSN 2250 – 3757]

Publication Date : 05 June 2013

