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Abstract— This paper presents Artificial Neural Network 

based critical clearing time (CCT) calculation for IEEE-9 bus 

system. The critical clearing time (CCT) at the critical 

contingency is considered as an index for transient stability. By 

selecting loads and generators active and reactive power as a 

input neurons critical clearing time is determined. The 

modeling and simulation results for load flow and CCT 

calculations are accomplished using the simulation package 

ETAP. The ANN training and testing is implemented in 

MATLAB software 
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I. INTRODUCTION 
 

The transient stability plays an important role in power 

system stability assessment. It deals with electromechanical 

oscillation of synchronous generators, created by a 

disturbance in the power system.  It is determined by 

observing the variation of the rotor angle as a function of 

time in the fault period. The stability analysis of power 

system may involve the calculation of Critical Clearing time 

(CCT) for a given fault which is nothing but, the maximum 

allowable value of the clearing time for which the system 

remains to be stable. If the fault is cleared within this time, 

the power system remains stable. However, if the fault is 

cleared after the CCT, the power system is most likely to 

become unstable. Thus, the estimation of CCT is an 

important task in the transient stability analysis for a given 

contingency. In this paper, an IEEE 9 Bus system is 

considered for the Transient StabilityAnalysis.  

 

Critical clearing time (CCT) is a measurement of power 

systems Transient stability. It denotes the secure time for 

clearing the contingency, usually three-phase ground-fault. 

A large value of CCT indicates that the power system has 

ample time to clear the contingency. CCT depends on 

generator inertias, line impedances, grid topology, and 

power systems operating conditions, fault type and location. 

For a single machine infinite bus power system, CCT 

calculations are straight forward. While for the case of 

multi-machine power systems, CCT is always obtained by 

time-domain simulations, and hence the evaluation of CCT 

can only be done off-line [1, 2]. 

 

Fast and efficient methods for transient stabilityanalysis 

have been sought due to the increase in sizeand complexity 

of power systems. A variety of methods for transient 

stability assessment have been proposedin the power 

systems literature. These arenumerical integration, direct 

methods, probabilisticmethods and pattern recognition 

methods.To reduce the computation burden and implement 

on-line assessment, a number of studies have applied 

artificial neural networks (ANN) to calculate the CCT for 

multi-machine power systems [3–10]. 

 

This paper presents a feasibility study of artificial neural 

networks (ANNs) for transient stability assessment for 

power systems.The ANNs use the system operating 

variables such as generator‟s output power and load demand 

as inputs. Section II describes the simulation of the IEEE 9-

bus test system in ETAP. Section III gives a brief 

description of the extended equal area criteria and its use in 

the calculation of the critical clearing time of a test power 

network. The training and the applicationof the neural 

network for transient stability assessment are described in 

Section IV. The presentation and discussion of the results 

are given in Section V.  The paper‟s conclusions are 

presented in Section VI. 

 

II. SIMULATION OF THE IEEE 9 
BUS SYSTEM 

 
The IEEE 9-bus test system is simulated on ETAP 

7.5.1. The single line diagram (SLD) of the simulated test 

system on ETAP is shown in Fig 1. For this test system 

generator and line parameters are given in appendix. The 

total generation is 519.5MW and total load is 315MW. The 

test system contains 6 lines connecting the bus bars in the 

system. The generator is connected to network through step-

up transformer at 230kV transmission voltage. The results of 

load flow analysis when all generators and loads are 

operating at rated power are given in Table.1 
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FIG. 1 SINGLE LINE DIAGRAM OF IEEE-9 BUS TEST SYSTEM 

TABLE.1 LOAD FLOW REPORT 

Bus 

No. 

Bus 

KV 

Voltage 

Mag. (%) 

Voltage 

Angle 

Gen. 

(MW) 

Gen. 

(MVAR) 

Load 

(MW) 

Load 

(MVAR) 

Bus 1 16.5 104.0 0.0 70.074 36.848 0 0 

Bus 2 18.0 102.5 9.5 163.00 21.017 0 0 

Bus 3 13.8 102.5 4.7 85.00 -5.165 0 0 

Bus 4 230 101.918 -2.1 0 0 0 0 

Bus 5 230 98.088 -3.8 0 0 120.70 48.099 

Bus 6 230 100.615 -3.7 0 0 91.112 30.365 

Bus 7 230 101.505 3.9 0 0 0 0 

Bus 8 230 100.722 0.8 0 0 101.454 35.494 

Bus 9 230 102.795 2.0 0 0 0 0 

 

III. CALCULATION OF CRITICAL 
CLEARING TIME USING 

EEAC 
 

A great interest has been raised on EEAC, since it was 

proposed in literature [12-16], because it is able to yield fast 

and accurate transient stability analysis. In order to 

determine the stability of the power system as a response to 

a certain disturbance, the extended equal area criterion 

(EEAC) method described in [16] decomposes the multi-

machine system into a set of critical machine(s) and a set of 

the „remaining‟ generators. The machines in the two groups 

are aggregated and then transformed into two equivalent 

machines to form a One-machine-Infinite-Bus (OMIB) 

system. Some basic assumptions for EEAC are : (i) The 

disturbed system separation depends upon the angular 

deviation between the following two equivalent clusters the 

critical machine group(cmg) and the remaining machine 

group(rmg), (ii) The partial centre of angles (PCOA) of the 

critical machine group (      and The partial centre of 

angles (PCOA) of the remaining machine group      : 
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Based on the above assumption, a multi-machine system can 

be transformed into equivalent two-machine system. Then 

the two machine equivalent is reduced to a single machine 

infinite bus system. The equivalent OMIB system model is 

given by the following equation: 
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The accelerating and decelerating areas are given by[17], 

[18]: 
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Where 0 denotes original (pre-fault), D during fault, and P 

post-fault,     is the critical clearing time.  

The transient stability margin:            , at the 

critical clearing time   ,               

 

Solving the equations (6) & (7), the critical clearing angle 

    can be computed. The value of critical clearing time 

(CCT) can be computed [18] by following formula: 

 

                         √
  

  
                                              

 

Where, 

   = generator output before fault  

   = pre-fault angle 

 

IV. USE OF ARTIFICIAL NEURAL 
NETWORKS FOR 
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ESTIMATING CRITICAL 
CLEARING TIME 

 

The neural network was inspired by its inception by the 

recognition that the human brain computes differently than 

that of a conventional digital computer. The brain acts as a 

highly complex, non-linear and parallel computer. An 

artificial neural network (ANN) is a flexible mathematical 

structure which is capable of identifying complex nonlinear 

relationships between input and output data sets. A neural 

network is a parallel-distributed processor made up of 

simple processing units, is known as neurons, which has a 

tendency for storing, and making easily available, 

experimental information. 

A three-layer feed-forward network with back-

propagation algorithm has been applied for the ANN 

training of the system under study. The data is propagated 

from the input layer to the hidden layers before reaching the 

final output layer. The error signals at the output layer are 

then propagated back to the hidden and input layers. The 

sum of square error is then minimized by adjusting the 

synaptic weights and bias in any layers during the training 

process of ANN models as shown in Fig. 2. 

Where, 

uii: Weight between the i
th

  neuron of input and i
th

  neuron of 

first hidden layer 

vii: Weight between the i
th

  neurons of two hidden layers 

wi: Weight between the i
th

  neuron of second hidden layer 

and output layer 

b
i
i: Bias Input 

For a multi-layer network, the net input n
k+1

(i) and 

output a
k+1

(i) of neuron i in the k+1 layer can be expressed 

as: 

1 1 1

1

( ) ( , ) ( ) ( )
sk

k k k k

j

n i w i j y j b i  



          (9) 

1 1 1( ) ( ( ))k k ka i f n i                                    (10) 

By representing the sum of the output square error as the 

performance index for the ANN, the error function is given 

by 

1 1

1 1
( ) ( ) ( )

2 2

R R
k kT T

r rr rr r
r r

E e eq qa a
 

    
  (11) 

Where 
k

r r re q a   is the output error and 
k

ra is the final 

output of the r
th

 input. The Levenberg–Marquardt algorithm 

is used to minimize the mean square error function in 

equation (11).  

When fault is occurred at the end of line 7-5 nearby bus 7, 

the real generator power (   ,     and    ), reactive 

generator power (   ,     and    ), load real power (   , 

   and   ) and load reactive power (   ,    and   ), are 

selected as the input neurons of the ANN model, while the 

output neuron defines the critical clearing time   . The 

number of neurons in input layer is equal to the number of 

inputs i.e. 12 while the output layer has one neuron. The 

selection of number of neurons for the two hidden layer is 

made on hit and trial method basis, comparing the 

regression plot of each and choosing the best among them. 

The best performance is obtained with 20 neurons in 1
st
 

hidden layer and 10 neurons in 2
nd

 hidden layer.The 

transient stability analysis for 100 cases have been carried 

out with the values of    ,             ,    ,   ,   , 

   ,   ,   ,     and    . The 80% of the total cases is 

selected for the ANN training, 10% for testing and 10% for 

validation. The corresponding critical clearing time as 

calculated by ANN with LMBP algorithm (   ) for different 

load-generation scenarios and fault is occurred on the end of 

line 7-5 at near bus 7 is shown in Table.2. 

The Table 2 summarizes the results of training the ANN. It 

illustrates the outputs of the ANN and the actual CCT 

computed with the EEAC method. The table shows 

randomly selected samples of the inputs and outputs of the 

ANN and the actual CCT. The results show a close 

agreement between the output of the ANN and the 

calculated CCT. It also shows the RMS values of the error 

and the difference between the ANN outputs and the CCT 

values for a fault at end of line 5-7 nearby bus 7, obtained 

by the EEAC method. This table indicates that the CCT 

value outputs of the ANN match the CCT obtained by the 

EEAC method with unacceptable level of accuracy. 
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Fig. 2 Three-layer feed forward neural network

TABLE 2: ANN-BASED CCT CALCULATION  

                                                 Actual 

CCT 

ANN 

Output  

Error (%) 

 

0.701 1.63 0.851 0.368 0.210 -0.052 1.25 0.90 1.00 0.50 0.30 0.35 0.31 0.33 

 

 

-0.0175 

0.325 1.62 0.81 -0.356 0.047 0.181 0.12 0.73 1.69 0.15 0.21 0.24 0.31 0.34 -0.0303 

0.283 1.58 0.63 0.174 0.185 -0.036 0.25 0.70 0.82 0.34 0.20 0.19 0.27 0.29 -0.0218 

0.345 1.47 0.63 -0.070 -0.060 -0.299 0.75 0.67 0.92 0.28 0.12 0.08 0.31 0.31 0.0044 

0.806 1.25 0.81 0.181 -0.029 -0.198 1.03 0.67 1.18 0.10 0.64 0.04 0.43 0.42 0.0153 

0.153 1.11 0.78 -0.050 0.429 -0.394 0.46 0.94 0.69 0.25 0.03 0.52 0.39 0.38 0.0065 

0.131 1.41 0.68 0.267 0.316 -0.539 0.68 0.76 0.76 0.34 0.16 0.25 0.30 0.36 -0.05717 

1.302 1.58 0.74 0.564 0.403 -0.234 1.09 0.67 1.84 0.22 0.94 0.14 0.41 0.39 0.0160 

0.788 1.58 0.89 -0.308 0.343 0.028 0.92 0.91 1.34 0.17 0.12 0.43 0.35 0.36 -0.0031 

1.082 1.64 0.67 0.399 0.250 0.063 0.71 1.08 1.60 0.33 0.25 0.74 0.34 0.34 0.0023 

0.685 0.98 1.00 -0.090 -0.280 -0.082 1.11 0.69 0.80 0.09 0.34 0.08 0.54 0.52 0.0261 

1.106 1.28 0.80 0.317 -0.011 -0.020 1.20 0.89 1.04 0.47 0.22 0.33 0.45 0.46 -0.0050 

0.955 1.38 0.79 0.037 -0.303 -0.163 1.06 0.75 1.37 0.21 0.21 0.14 0.39 0.39 0.0056 

0.441 1.68 0.71 0.114 -0.152 -0.050 1.28 0.66 0.87 0.24 0.17 0.12 0.26 0.27 0.00084 

0.578 1.39 0.69 0.057 -0.279 0.146 0.64 1.00 0.85 0.13 0.33 0.23 0.34 0.33 0.0072 

0.518 1.57 0.82 0.333 0.219 -0.292 0.85 1.31 0.71 0.40 0.46 0.03 0.31 0.33 -0.0189 

0.917 1.49 0.71 0.226 0.361 -0.139 0.74 1.57 0.74 0.25 0.87 0.02 0.37 0.35 0.0158 

0.200 1.92 0.59 -0.149 0.372 -0.158 0.87 0.69 0.71 0.47 0.20 0.24 0.21 0.20 0.0094 
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0.396 1.29 0.53 0.191 0.417 -0.127 0.84 0.69 0.71 0.89 0.27 0.19 0.36 0.35 0.0149 

1.719 1.00 0.50 -0.202 0.561 -0.360 0.92 1.04 1.07 0.23 0.17 0.23 0.12 0.13 -0.0033 

0.710 1.80 0.47 0 0.165 0.129 0.96 1.06 1.10 0.46 0.36 0.09 0.27 0.26 0.0109 

0.680 2.28 0.49 0 0.397 0.020 1.05 1.28 1.08 0.11 0.38 0.31 0.21 0.22 -0.0165 

0.728 1.21 0.49 -0.112 0.203 -0.118 0.74 0.64 0.97 0.24 0.20 0.39 0.42 0.36 0.0581 

V. Conclusion 

ANN is a very fast tool for CCT estimation compared to 

other methods but should be trained carefully over a wide 

hyperspace in order to avoid over-fitting. The ANN is 

trained once for a given power system for any expected 

situation and then used for any load condition in the system. 

Results obtained using an artificial neural network to predict 

critical clearing times for a specific fault and clearing modes 

in power system. The pre fault active and reactive powers of 

all generators and loads are used as ANN inputs. For IEEE-9 

bus system it is found that for most testing examples the 

CCT was predicted with good accuracy. 

 

 

 

APPENDIX 
 

Generator Data at 100MVA Base 
Generator G1 G2 G3 

Rated MVA 

(G) 

247.5 192 128 

kV 16.5 18.0 13.8 

Power Factor 1.0 0.85 0.85 

Speed(rpm) 150 3000 

 

3000 

Type Hydro Steam Steam 

   (pu) 0.1460 0.8958 1.3125 

   (pu) 0.0608 0.1198 0.1813 

   (pu) 0.0969 0.8645 1.2578 

    (pu) 0.0969 0.1969 0.25 

 

  (leakage) 

(pu) 

0.0336 0.0521 0.0742 

     8.96 6.00 5.89 

     0 0.535 0.600 

Inertia 

constant (H) 

23.64 

MJ/MVA 

6.40 

MJ/MVA 

3.01 

MJ/MVA 
 

Line Date at 230kV, 100MVA Base 

Bus to Bus 

(Line) 

R (pu) X(pu) Half Line 

Charging /2(pu) 

1-4 0.0000 0.0576 0.0000 

4-5 0.010 0.085 0.088 

5-7 0.032 0.161 0.0153 

4-6 0.017 0.092 0.079 

6-9 0.039 0.170 0.179 

7-2 0.0000 0.0625 0.0000 

7-8 0.0085 0.072 0.0745 

8-9 0.0119 0.1008 0.1045 

9-3 0.0000 0.0586 0.0000 
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