

226

Predicting Hadoop Parameters

Ziad Benslimane, Qin Liu

Software Engineering Department

Tongji University

Shanghai, P.R. China

ziad.benslimane@mavs.uta.edu,

qin.liu@tongji.edu.cn

Zhu Hongming

Software Engineering Department

Tongji University

Shanghai, P.R. China

zhu_hongming@tongji.edu.cn

Abstract—The interest in analyzing the growing

amounts of data has encouraged the deployment of

large scale parallel computing frameworks such as

Hadoop. In other words, data analytic is the main

reason behind the success of distributed systems;

this is due to the fact that data might not fit on a

single disk, and that processing can be very time

consuming so analyzing the input in parallel is

very useful. Hadoop relies on the MapReduce

programming paradigm to distribute work among

the machines; so a good balance of load will

eventually influence the execution time of those

kinds of applications.This paper introduces a

technique to predict some configuration

parameters from the application's CPU utilization

in order to optimize Hadoop.

Keywords: Hadoop, Cloud Computing, Distributed

Systems

I. Terminology

A. NameNode
The NameNode is a unique HDFS node

responsible for the file system namespace holding
the metadata of the files stored in DataNodes; this
node usually has the most expensive hardware
available to avoid single point of failure [1].

B. DataNode
The DataNode is where the blocks are actually

stored; it is usually made of commodity hardware
since replication is offered by the software layer to
the multiple instances running in the cluster [1].

C. JobTracker
The JobTracker is the node managing the

MapReduce jobs by scheduling MapReduce tasks
on the TaskTrackers and monitoring them [1].

D. TaskTracker
The TaskTracker node runs the Java Virtual

Machine to execute the Map or Reduce tasks
launched by the JobTracker. Multiple TaskTrackers
must exist in a cluster in order to achieve
parallelism [1].

II. Introduction
The decreasing price of disk storage and the

increasing amount of generated data have
introduced a problematic situation that data analytic
has to cope with; the issue here is that the input can
exceed any single hard disk and the application
might be too heavy for a single CPU. The good
news is that such data analytic has become possible
due to the introduction of parallel computing and
data distribution frameworks such as Hadoop.

Hadoop is an open source framework that
allows distributed processing for huge amounts of
data over a cluster and its architecture is made of
two components: the Hadoop Distributed File
System (HDFS) and the MapReduce framework.
The first component, HDFS, runs on top of the
existing file system on each node and it has a
default block size of 64 MB; while the second
component relies on the functional programming
functions Map and Reduce. Based on this
architecture, Hadoop is made of HDFS nodes and
MapReduce ones; the first ones include the
NameNode and multiple DataNodes, while the
second category has one JobTracker and multiple
TaskTrackers.

Hadoop has many advantages, including but not
limited to the following [2]:

 Performing large scale computations

 Handling an input much larger than any

single hard drive

 Managing failure and data congestion

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

mailto:qin.liu@tongji.edu.cn
mailto:zhu_hongming@tongji.edu.cn

227

 Using a simplified programming model

 Allowing automatic distribution of data

 Promoting very good scalability

 Keeping up with Moore's law

Hadoop splits data into chunks and then spreads

them across the nodes with some required tasks to
be done over them. It does that by breaking the
problem into “Map'” and “Reduce” steps where the
map phase splits the input and then passes sub-
problems to slave nodes from which it expects an
answer back and the reduce phase collects them
back in order to form the answer for the original
problem [3].

The main research now is about how to
optimize Hadoop to get faster execution times
given that every application is different in terms of
resource consumption; so it is very important to do
load balancing depending on the application's
bottlenecks.

III. Literature Review
The current research is mainly conducted by

Apache which is offering three different sub-
projects related to Hadoop: Common, HDFS, and
MapReduce. The ''MapReduce'' subproject is the
most interesting for this chosen research area and it
focuses on the programming model that is based on
the two steps defined before: Map and Reduce [4].

Another good source of information of Hadoop
is Cloudera, which gives training based on online
classes, tutorials, as well as utilities to better
understand the implementation details of Hadoop
[5].

Many papers are now tackling the problem of
performance from different perspectives, but most
papers argue that Hadoop configuration has to be
changed according to the cluster's hardware and
application's needs; the configuration includes over
180 parameters and most of them should not be
kept at their default values.

In the paper titled: “Optimizing Hadoop for the
Cluster” [1], it is argued that Hadoop's default
configuration should not be expected to be the most
optimized one for all kinds of clusters and all types
of applications; according to the paper, this
motivation should influence Hadoop users to
change the configuration files to suit their own
needs.

Moreover, another paper titled: “Towards
Optimizing Hadoop Provisioning in the Cloud” [6],
gets similarly motivated by the fact that one size
does not fit all and that static default parameters
cannot be suitable to all kinds of applications. The
paper suggests that in order to maximize resource
utilization, which is to keep all resources as much

busy as possible, a consumption profile history of
the application is needed. .

IV. Motivation
Hadoop comes with a built-in configuration that

is not supposed to always give the optimal results
regardless of cluster infrastructure, application type,
input size, or network topology. In other words, the
default parameters generated when installing
Hadoop have to be tuned and optimized in order to
give good results depending on the user's needs;
this process however is known to be very tedious
and time consuming as the user usually has to do
many experiments in order to choose a good set of
parameters.

The solution presented in this paper will allow a
user to predict the best number of map tasks
spawned as well as how many of them should be
run in parallel at any given time; and that prediction
will be based on the CPU statistics revealed by
running the application on a single node cluster
with a smaller input size in case the original one is
too large to fit on a single disk.

Theoretically, after running an application on a
single node cluster, it is very easy to determine the
exact amount of time spent by the CPU running that
specific job; so taking that into consideration, an
application can be categorized by either being
CPU-intensive, or CPU-light. Based on the
application's category, a user can first decide on the
number of map tasks to be scheduled and then on
the ones to run in parallel on each node.

Predicting the number of map tasks is based on
the idea that a single map task for a CPU intensive
application is supposed to consume a decent
amount of time, so the time required to generate an
extra task would be kind of negligible; however, for
a light CPU application, a map task setup overhead
can be influential thus has to be minimized. On the
other hand, predicting the number of parallel maps
is related to the fact that the CPUs have to be kept
as busy as possible; so CPU-light parallel maps
have to be increased while CPU-heavy concurrent
maps have to be decreased.

In order to successfully carry those experiments,
and knowing that Hadoop automatically decides the
number of map tasks based on the input splits, the
input files were either merged or divided in order to
force Hadoop to pick the exact number of Map
tasks required for any given test.

V. Experiments

In this paper, the following three applications

were run in a single node cluster to see their

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

228

CPU usage time: the PiEstimator, Grep, as well

as MRIF (Map Reduce Integer Factorization).

After that, they were categorized depending on

their CPU usage either as CPU light or CPU

intensive. Next, taking the category in

consideration, the number of map tasks and the

number of parallel maps were predicted and the

configuration files were modified accordingly.

Finally, the applications were executed using the

new modified configuration files as well as the

default Hadoop ones and the results were then

compared and presented under the “Results”

section.

A. Test Cases

PiEstimator

The PiEstimator is one of the map-reduce

applications offered by Hadoop in its default

installation directory; the application’s mapper tries

to estimate π by generating a given amount of

random numbers and checking whether they are

inside or outside the circle.

This application takes 2 input arguments: the

number of map tasks to launch as well as the

number of samples to check for [7]

Grep

The Grep map-reduce application counts the

number of occurrences of each matching string in a

text file; the map task is responsible for counting

the number of times each match occurred in a single

line while the reducer just sums up the values. The

Grep application command only takes the regular

expression as input; the number of maps gets

generated automatically by Hadoop depending on

the input splits. This application runs two jobs in

sequence, one as a counter and a second as a sorter

[8].

Mrif

The Map Reduce Integer Factorization

application is an implementation of the Quadratic

Sieve Algorithm that does integer factorization;

each mapper is responsible for performing a sieve

on an interval and returning the smooth factors; on

the other hand, the reducer tries to find a subset of

them whose product is a square [9]. This

application takes one input, which is the integer to

be factorized, then it generates one single file that

Hadoop uses as an input split so only 1 map task

gets launched.

B. First Phase: Single Node
Cluster
The experiments in this phase were run on the

same computer that had a dual core CPU running at
a clock rate of 1.73 GHz. The PiEstimator, which
takes the number of map tasks as input as well as
the number of samples, was assigned 1 map and
1000 samples; On the other hand, Hadoop launched
one map task for MRIF as it generated only one
input file out of the integer given:
59595959595959595959; moreover, Grep was
assigned to look for the string “so” and got 12 map
tasks from hadoop for having 12 input text books.

The CPU usage time was revealed by the output
of the MapReduce framework, and the results are

presented in Figure 1.

Figure 1: CPU Utilization

C. Second Phase: Multi Node
Cluster
The aim of this phase is to prove that light CPU

applications need high parallelism to keep a CPU
busy while heavy CPU applications don't need that
much; Moreover, the goal was to show that the
number of tasks should be minimized for light-CPU
applications due to the task setup overhead, while
they should be maximized for CPU-heavy
applications to distribute the load evenly across
CPUs.

The experiments of this phase were conducted
on a cluster of three nodes, each with a dual core
CPU running at 1.7 GHz. One master node where
all the commands were run had the namenode, the
secondary namenode, the jobtracker, a tasktracker,
and a datanode; whereas each of the other two
nodes had a datanode and a tasktracker.

All the applications were executed with a
changing number of map tasks as well as a
changing amount of parallelism; this was done to
find the optimum number of map tasks and map
parallelism for the light CPU applications as well as
the heavy CPU ones.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

229

The amount of parallelism was changed by
modifying the “mapred-site.xml” file inside the
“conf” directory; the parameter field called

“mapred.map.parallel” was edited to either disable

parallelism by assigning a zero, or by allowing full
parallelism thus assigning 4 map tasks given the
number of tasks to test with was 12.

As far as the PiEstimator application is
concerned, it was always run with 1000 samples
and the number of map tasks was given through the
command line. However, the Grep application was
given the following string to look for “so”, and the
“cat” command had to be used in order to merge
the 12 input splits thus forcing Hadoop to change
the number of maps. Unlike the previous
applications, the MRIF application was CPU
intensive, and it was executed to factorize the
following integer: 59595959595959595959; the
number of map tasks was influenced by using the
“split” command which splits the input file into
many partitions.

VI. Results and Discussion

A. First Phase
The aim of this phase was to categorize

applications based on their CPU utilization, so
MRIF was considered to be CPU-intensive while
PiEstimator and Grep were both taken to be CPU-
light as Figure 1.

The percentages were calculated by dividing the
field of “CPU time spent” by the total execution
time; as far as the PiEstimator is concerned, the
CPU ran for 4000 ms while the total execution time
was 32100 ms. In a similar fashion, the Grep
application executed in 31 seconds while the CPU
spent only 6510 ms. Moreover, the MRIF
application run for almost 194 seconds and its CPU
spent around 171 seconds.

Figure 2: Execution Time for CPU-Light

Figure 3: Execution Time for CPU-Heavy

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

230

B. Second Phase
Figure 2 shows that increasing the number of

map tasks for light CPU applications is not a good
idea; this is due to the fact that the overhead of
setting up a task is not negligible compared to the
time required to finish executing a task. Both CPU
light applications, PiEstimator and Grep, executed
faster when given 1 or 3 map tasks rather than 6 or

12 ones. Figure 2 also shows that parallelism is

good for those kinds of applications; it allows you
to keep the CPU as busy as possible by executing
many light tasks at the same time.

On the other hand, and as Figure 3 shows,

increasing the number of map tasks for a heavy-
CPU application is rather a good idea; this is
related to the task setup time being negligible once
compared with the huge time of executing a heavy
task. So it is always better to run multiple tasks in
order to distribute the balanced load across all the
CPUs. Moreover, decreasing parallelism for heavy
tasks is very beneficial to avoid abusing the CPUs;
in other words, each CPU is already busy enough
with one heavy task and should not be allowed to
run many ones in parallel.

VII. Future Work

The current paper only discusses how to

optimize the number of map tasks given the CPU

utilization; it is planned though, in the near future,

to include a possible way of predicting also the

number of reduce tasks. Moreover, there is a good

chance of including “Ganglia” [10], which is a

famous cluster monitoring tool that might display

more accurate results concerning the cluster

performance. If time permits, the “Cloudera” [11]

configuration tool will be incorporated in order to

compare their configuration parameters to the ones

predicted in this paper.

VIII. Conclusion
Even though Hadoop contributes heavily to data

analytic; it needs to be optimized for each specific
application and cluster. The solution discussed in
this paper takes advantage of the application's CPU
statistics in order to predict the number of map
tasks as well as the number of parallel ones; this
optimization reduces the overall execution time by
applying a good load balance and by avoiding any
possible CPU bottlenecks.

REFERENCES

[1] Christer Hansen. Optimizing hadoop for the cluster.

Technical report, Institute for Computer Science,
University of Tromsa.

[2] Zak Stone. Introduction to hadoop. Technical report,
Harvard School of Engineering and Applied Sciences.

[3] Wikipedia. http://en.wikipedia.org/wiki/MapReduce,
2012. [Online; accessed 4-January-2012].

[4] The Apache Software Foundation.
http://hadoop.apache.org/mapreduce/, 2011.[Online;
accessed 11-November-2011].

[5] Inc. Cloudera. http://www.cloudera.com/hadoop-
training/, 2011. [Online; accessed 5-November-2011].

[6] Kambatla Karthik. Towards Optimizing Hadoop
Provisioning in the Cloud. Technical report, Purdue
University, IBM Research Almaden.

[7] Apache.
http://hadoop.apache.org/common/docs/r0.20.2/api/org/a
pache/hadoop/examples/PiEstimator.html,2009. [Online;
accessed 17-February-2012].

[8] Hadoop Wiki. Grep Example.
http://wiki.apache.org/hadoop/Grep, 2009.[Online;
accessed 13-February-2012].

[9] Tordable Javier. Map Reduce for Integer Factorization.
http://code.google.com/p/mapreduce-integer-
factorization/, 2009. [Online; accessed 19-March-2012].

[10] Ganglia Monitoring System.
http://ganglia.sourceforge.net/. [Online; accessed 25-
March-2012].

[11] Inc. Cloudera. http://www.cloudera.com/, 2012. [Online;
accessed 13-March-2012].

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

