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Abstract—The interest in analyzing the growing 

amounts of data has encouraged the deployment of 

large scale parallel computing frameworks such as 

Hadoop. In other words, data analytic is the main 

reason behind the success of distributed systems; 

this is due to the fact that data might not fit on a 

single disk, and that processing can be very time 

consuming so analyzing the input in parallel is 

very useful. Hadoop relies on the MapReduce 

programming paradigm to distribute work among 

the machines; so a good balance of load will 

eventually influence the execution time of those 

kinds of applications.This paper introduces a 

technique to predict some configuration 

parameters from the application's CPU utilization 

in order to optimize Hadoop.  

Keywords: Hadoop, Cloud Computing, Distributed 

Systems 

I. Terminology 

A. NameNode 
The NameNode is a unique HDFS node 

responsible for the file system namespace holding 
the metadata of the files stored in DataNodes; this 
node usually has the most expensive hardware 
available to avoid single point of failure [1]. 

B. DataNode 
The DataNode is where the blocks are actually 

stored; it is usually made of commodity hardware 
since replication is offered by the software layer to 
the multiple instances running in the cluster [1]. 

C.  JobTracker 
The JobTracker is the node managing the 

MapReduce jobs by scheduling MapReduce tasks 
on the TaskTrackers and monitoring them [1]. 

 

D. TaskTracker 
The TaskTracker node runs the Java Virtual 

Machine to execute the Map or Reduce tasks 
launched by the JobTracker. Multiple TaskTrackers 
must exist in a cluster in order to achieve 
parallelism [1]. 

II. Introduction 
The decreasing price of disk storage and the 

increasing amount of generated data have 
introduced a problematic situation that data analytic 
has to cope with; the issue here is that the input can 
exceed any single hard disk and the application 
might be too heavy for a single CPU. The good 
news is that such data analytic has become possible 
due to the introduction of parallel computing and 
data distribution frameworks such as Hadoop. 

Hadoop is an open source framework that 
allows distributed processing for huge amounts of 
data over a cluster and its architecture is made of 
two components: the Hadoop Distributed File 
System (HDFS) and the MapReduce framework. 
The first component, HDFS, runs on top of the 
existing file system on each node and it has a 
default block size of 64 MB; while the second 
component relies on the functional programming 
functions Map and Reduce. Based on this 
architecture, Hadoop is made of HDFS nodes and 
MapReduce ones; the first ones include the 
NameNode and multiple DataNodes, while the 
second category has one JobTracker and multiple 
TaskTrackers. 

Hadoop has many advantages, including but not 
limited to the following [2]: 

 Performing large scale computations 

 Handling an input much larger than any 

single hard drive 

 Managing failure and data congestion 
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 Using a simplified programming model 

 Allowing automatic distribution of data  

 Promoting very good scalability 

 Keeping up with Moore's law 

 
Hadoop splits data into chunks and then spreads 

them across the nodes with some required tasks to 
be done over them. It does that by breaking the 
problem into “Map'” and “Reduce” steps where the 
map phase splits the input and then passes sub-
problems to slave nodes from which it expects an 
answer back and the reduce phase collects them 
back in order to form the answer for the original 
problem [3]. 

The main research now is about how to 
optimize Hadoop to get faster execution times 
given that every application is different in terms of 
resource consumption; so it is very important to do 
load balancing depending on the application's 
bottlenecks. 

III. Literature Review 
The current research is mainly conducted by 

Apache which is offering three different sub-
projects related to Hadoop: Common, HDFS, and 
MapReduce. The ''MapReduce'' subproject is the 
most interesting for this chosen research area and it 
focuses on the programming model that is based on 
the two steps defined before: Map and Reduce [4]. 

Another good source of information of Hadoop 
is Cloudera, which gives training based on online 
classes, tutorials, as well as utilities to better 
understand the implementation details of Hadoop 
[5]. 

Many papers are now tackling the problem of 
performance from different perspectives, but most 
papers argue that Hadoop configuration has to be 
changed according to the cluster's hardware and 
application's needs; the configuration includes over 
180 parameters and most of them should not be 
kept at their default values. 

In the paper titled: “Optimizing Hadoop for the 
Cluster” [1], it is argued that Hadoop's default 
configuration should not be expected to be the most 
optimized one for all kinds of clusters and all types 
of applications; according to the paper, this 
motivation should influence Hadoop users to 
change the configuration files to suit their own 
needs. 

Moreover, another paper titled: “Towards 
Optimizing Hadoop Provisioning in the Cloud” [6], 
gets similarly motivated by the fact that one size 
does not fit all and that static default parameters 
cannot be suitable to all kinds of applications. The 
paper suggests that in order to maximize resource 
utilization, which is to keep all resources as much 

busy as possible, a consumption profile history of 
the application is needed. . 

IV. Motivation 
Hadoop comes with a built-in configuration that 

is not supposed to always give the optimal results 
regardless of cluster infrastructure, application type, 
input size, or network topology. In other words, the 
default parameters generated when installing 
Hadoop have to be tuned and optimized in order to 
give good results depending on the user's needs; 
this process however is known to be very tedious 
and time consuming as the user usually has to do 
many experiments in order to choose a good set of 
parameters. 

The solution presented in this paper will allow a 
user to predict the best number of map tasks 
spawned as well as how many of them should be 
run in parallel at any given time; and that prediction 
will be based on the CPU statistics revealed by 
running the application on a single node cluster 
with a smaller input size in case the original one is 
too large to fit on a single disk. 

Theoretically, after running an application on a 
single node cluster, it is very easy to determine the 
exact amount of time spent by the CPU running that 
specific job; so taking that into consideration, an 
application can be categorized by either being 
CPU-intensive, or CPU-light. Based on the 
application's category, a user can first decide on the 
number of map tasks to be scheduled and then on 
the ones to run in parallel on each node. 

Predicting the number of map tasks is based on 
the idea that a single map task for a CPU intensive 
application is supposed to consume a decent 
amount of time, so the time required to generate an 
extra task would be kind of negligible; however, for 
a light CPU application, a map task setup overhead 
can be influential thus has to be minimized. On the 
other hand, predicting the number of parallel maps 
is related to the fact that the CPUs have to be kept 
as busy as possible; so CPU-light parallel maps 
have to be increased while CPU-heavy concurrent 
maps have to be decreased. 

In order to successfully carry those experiments, 
and knowing that Hadoop automatically decides the 
number of map tasks based on the input splits, the 
input files were either merged or divided in order to 
force Hadoop to pick the exact number of Map 
tasks required for any given test. 

V. Experiments 

In this paper, the following three applications 

were run in a single node cluster to see their 
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CPU usage time: the PiEstimator, Grep, as well 

as MRIF (Map Reduce Integer Factorization). 

After that, they were categorized depending on 

their CPU usage either as CPU light or CPU 

intensive. Next, taking the category in 

consideration, the number of map tasks and the 

number of parallel maps were predicted and the 

configuration files were modified accordingly. 

Finally, the applications were executed using the 

new modified configuration files as well as the 

default Hadoop ones and the results were then 

compared and presented under the “Results” 

section.  

A. Test Cases 

PiEstimator 

The PiEstimator is one of the map-reduce 

applications offered by Hadoop in its default 

installation directory; the application’s mapper tries 

to estimate π by generating a given amount of 

random numbers and checking whether they are 

inside or outside the circle. 

This application takes 2 input arguments: the 

number of map tasks to launch as well as the 

number of samples to check for [7]  

Grep 

The Grep map-reduce application counts the 

number of occurrences of each matching string in a 

text file; the map task is responsible for counting 

the number of times each match occurred in a single 

line while the reducer just sums up the values. The 

Grep application command only takes the regular 

expression as input; the number of maps gets 

generated automatically by Hadoop depending on 

the input splits. This application runs two jobs in 

sequence, one as a counter and a second as a sorter 

[8]. 

Mrif 

The Map Reduce Integer Factorization 

application is an implementation of the Quadratic 

Sieve Algorithm that does integer factorization; 

each mapper is responsible for performing a sieve 

on an interval and returning the smooth factors; on 

the other hand, the reducer tries to find a subset of 

them whose product is a square [9]. This 

application takes one input, which is the integer to 

be factorized, then it generates one single file that 

Hadoop uses as an input split so only 1 map task 

gets launched. 

B. First Phase: Single Node 
Cluster 
The experiments in this phase were run on the 

same computer that had a dual core CPU running at 
a clock rate of 1.73 GHz. The PiEstimator, which 
takes the number of map tasks as input as well as 
the number of samples, was assigned 1 map and 
1000 samples; On the other hand, Hadoop launched 
one map task for MRIF as it generated only one 
input file out of the integer given: 
59595959595959595959; moreover, Grep was 
assigned to look for the string “so” and got 12 map 
tasks from hadoop for having 12 input text books. 

The CPU usage time was revealed by the output 
of the MapReduce framework, and the results are 

presented in Figure 1. 

 

 

 

 

 

 

Figure 1: CPU Utilization 

C. Second Phase: Multi Node 
Cluster 
The aim of this phase is to prove that light CPU 

applications need high parallelism to keep a CPU 
busy while heavy CPU applications don't need that 
much; Moreover, the goal was to show that the 
number of tasks should be minimized for light-CPU 
applications due to the task setup overhead, while 
they should be maximized for CPU-heavy 
applications to distribute the load evenly across 
CPUs. 

The experiments of this phase were conducted 
on a cluster of three nodes, each with a dual core 
CPU running at 1.7 GHz. One master node where 
all the commands were run had the namenode, the 
secondary namenode, the jobtracker, a tasktracker, 
and a datanode; whereas each of the other two 
nodes had a datanode and a tasktracker.  

All the applications were executed with a 
changing number of map tasks as well as a 
changing amount of parallelism; this was done to 
find the optimum number of map tasks and map 
parallelism for the light CPU applications as well as 
the heavy CPU ones. 
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The amount of parallelism was changed by 
modifying the “mapred-site.xml” file inside the 
“conf” directory; the parameter field called 

“mapred.map.parallel” was edited to either disable 

parallelism by assigning a zero, or by allowing full 
parallelism thus assigning 4 map tasks given the 
number of tasks to test with was 12.  

As far as the PiEstimator application is 
concerned, it was always run with 1000 samples 
and the number of map tasks was given through the 
command line. However, the Grep application was 
given the following string to look for “so”, and the 
“cat” command had to be used in order to merge 
the 12 input splits thus forcing Hadoop to change 
the number of maps. Unlike the previous 
applications, the MRIF application was CPU 
intensive, and it was executed to factorize the 
following integer: 59595959595959595959; the 
number of map tasks was influenced by using the 
“split” command which splits the input file into 
many partitions. 

VI. Results and Discussion 

A. First Phase 
The aim of this phase was to categorize 

applications based on their CPU utilization, so 
MRIF was considered to be CPU-intensive while 
PiEstimator and Grep were both taken to be CPU-
light as Figure 1. 

The percentages were calculated by dividing the 
field of “CPU time spent” by the total execution 
time; as far as the PiEstimator is concerned, the 
CPU ran for 4000 ms while the total execution time 
was 32100 ms. In a similar fashion, the Grep 
application executed in 31 seconds while the CPU 
spent only 6510 ms. Moreover, the MRIF 
application run for almost 194 seconds and its CPU 
spent around 171 seconds. 

 

 

 

Figure 2: Execution Time for CPU-Light 

 

Figure 3: Execution Time for CPU-Heavy 
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B. Second Phase 
Figure 2 shows that increasing the number of 

map tasks for light CPU applications is not a good 
idea; this is due to the fact that the overhead of 
setting up a task is not negligible compared to the 
time required to finish executing a task. Both CPU 
light applications, PiEstimator and Grep, executed 
faster when given 1 or 3 map tasks rather than 6 or 

12 ones. Figure 2 also shows that parallelism is 

good for those kinds of applications; it allows you 
to keep the CPU as busy as possible by executing 
many light tasks at the same time. 

On the other hand, and as Figure 3 shows, 

increasing the number of map tasks for a heavy-
CPU application is rather a good idea; this is 
related to the task setup time being negligible once 
compared with the huge time of executing a heavy 
task. So it is always better to run multiple tasks in 
order to distribute the balanced load across all the 
CPUs. Moreover, decreasing parallelism for heavy 
tasks is very beneficial to avoid abusing the CPUs; 
in other words, each CPU is already busy enough 
with one heavy task and should not be allowed to 
run many ones in parallel. 

VII. Future Work 

The current paper only discusses how to 

optimize the number of map tasks given the CPU 

utilization; it is planned though, in the near future, 

to include a possible way of predicting also the 

number of reduce tasks. Moreover, there is a good 

chance of including “Ganglia” [10], which is a 

famous cluster monitoring tool that might display 

more accurate results concerning the cluster 

performance. If time permits, the “Cloudera” [11] 

configuration tool will be incorporated in order to 

compare their configuration parameters to the ones 

predicted in this paper. 

VIII. Conclusion 
Even though Hadoop contributes heavily to data 

analytic; it needs to be optimized for each specific 
application and cluster. The solution discussed in 
this paper takes advantage of the application's CPU 
statistics in order to predict the number of map 
tasks as well as the number of parallel ones; this 
optimization reduces the overall execution time by 
applying a good load balance and by avoiding any 
possible CPU bottlenecks. 
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