
209

New Cryptosystem Based on Lucifer with Controlled

Key and Efficient S-boxes
 (LKES)

Abstract—Networked computers are omnipresent, and are

subject to attack, misuse, and abuse. One method to counteract

the ever increasing cyber threat is to provide new symmetric

algorithms satisfies the security requirements. In this paper we

introduce new symmetric system based on Lucifer cryptosystem.

The plaintext block is divided into basic sub-blocks each of

thirty-two bits in length. The new Proposal can encrypt blocks of

plaintext of length 256 bits into blocks of the same length. The

key length is 512 bits. It uses new S-boxes implemented using

Gold Exponent function one of APN (Almost Perfect Nonlinear)

function. In this system, we try to get the minimum correlation

between plaintext and ciphertext, highly avalanche effect and

defeat the frequency analysis and most well-known attacks. The

new algorithm is compared with Lucifer cryptosystem and gives

excellent results from the viewpoint of the security characteristics

and the statistics of the ciphertext. Also, we apply the

randomness test to the proposed algorithm and the results shown

that the new design passes all tests which proven its security.

Keywords— Lucifer cryptographic system, APN, Gold

exponent, frequency analysis.

I. Introduction
Lucifer [1], a direct predecessor of the DES algorithm, is a
block cipher having l28 bit block size and 128 bit key length.
The message block to be enciphered is divided into two
halves, the upper and lower, each containing eight bytes (64
bits). The bytes of the message are initially ordered so that the
rightmost byte is the highest, and the leftmost byte is the
lowest. Encryption (and decryption) is divided into sixteen
rounds. During a round, the lower half of the message is
transformed; the upper half is not changed, but its contents are
used as input to the transformation. Between rounds, the upper
and lower halves of the message are exchanged. The halves of
the message move in step and rotate one position after each
byte is used. The nonlinear transformations contain two
different non-linear substitution boxes (S-boxes), 0S and 1S .

Each S-box has four input bits and four output bits. An S-box
can be considered to implement a permutation of the numbers
from 0 to 15. If the interchange control-bit is zero, then the
right bits of the message byte are input to 1S and the left bits

are input to 0S . If the interchange control bit is one, then the

bits input to the S-boxes are interchanged; the right bits are

input to 0S and the left bits are input to 1S .The generation of

transformed bytes using the bytes of the upper half of the
message as input to the key-controlled S-boxes is called
confusion. It is then bitwise XORed (addition modulo 2) with
the subkey. This process is called key interruption, since the
use of the key acts as a barrier to cryptanalysis by merging
some secret information into the confused bytes. The eight bits
of each resulting interrupted byte are permuted according to a
fixed Permutation. The permuted bits are then XORed with
eight bits of the lower part of the message. The eight bits in
the lower half of the message are chosen according to the bit
pattern of convolution XOR cells. This process is called
diffusion, since the result of the transformation of one half of
the message is diffused throughout the other half of the
message. The confusion, key interruption, and diffusion (c-i-d)
Cycle described above forms a single round as shown in Fig.1.

Figure 1. Block diagram of CID Lucifer

Table 1 shows the order in which the key bytes (rows) are
accessed for each round. Each entry in the table is the number
of the key byte to be accessed.

II. The New Proposed System
The new system is a block cipher; it can encrypt blocks of
plaintext of length 256 bits into blocks of the same length. The
key length is 512 bits. The total number of rounds is 16. In
each round we work on the entire data block. In the new
system we: propose new S-boxes using Gold exponent
function, introduce row shift of data dependent on subkey of

H. Elkamchouchi, , Senior member

IEEE
1

1
Electrical Engineering Department,

Faculty of Engineering, Alexandria

University, Alexandria,

 Egypt

Helkamchouchi@ieee.org

M.R.M. Rizk, Senior member

IEEE
2

2
Electrical Engineering Department,

Faculty of Engineering, Alexandria

University, Alexandria,

 Egypt

mrmrizk@ieee.org

Fatma Ahmed, Member

UACEE
3

3
Electrical Engineering Department,

Alexandria Higher Institute of

Engineering and Technology,

Alexandria, Egypt.

moonyally@yahoo.com

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

210

the round, permute each word in the block using fixed
permutation which reduces the correlation coefficient as small
as possible and in convolution step the two halves of a
message depend on each other and we defeat the frequency
analysis of ciphertext.

TABLE 1. KEY-BYTE ACCESS SCHEDULE

 Message Byte

C
-D

-I
 R

o
u

n
d

 0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7

2 7 8 9 10 11 12 13 14

3 14 15 0 1 2 3 4 5

4 5 6 7 8 9 10 11 12

5 12 13 14 15 0 1 2 3

6 3 4 5 6 7 8 9 10

7 10 11 12 13 14 15 0 1

8 1 2 3 4 5 6 7 8

9 8 9 10 11 12 13 14 15

10 15 0 1 2 3 4 5 6

11 6 7 8 9 10 11 12 13

12 13 14 15 0 1 2 3 4

13 4 5 6 7 8 9 10 11

14 11 12 13 14 15 0 1 2

15 2 3 4 5 6 7 8 9

16 9 10 11 12 13 14 15 0

A. Shift Row Step
The LKES is cryptosystem aims to make the system

controlled by key. The first step in LKES is shift row
controlled by the user key. The plaintext block is 256 bits
divided into eight rows each row is 32 bits. At the first step we
merge the first two bytes of round subkey to produce inter-
controlled key block with length 16 bits. Then, the inter-
controlled key block divided into sub blocks (each one has a
length of 2 bits). The value in each sub block is converted to a
decimal number. We shift each row of data using the value in
inter-controlled key sub block (the number of sub block is the
number of row).

B. The proposed S-boxes
T In this paper we introduce new S-boxes implemented using
the Gold exponent function. To understand the new S-boxes,
we need first adopt the following definitions:

Definition 1: Let 1G and 2G be finite Abelian groups [2]. A

mapping 1 2:F G G is called differentially δ-uniform if for all

1, 0G   and 2G 

 1 | () ()z G F z F z       (1)

Differentially 2-uniform mapping are the almost perfect

nonlinear permutations of (2)nGF as defined in [3].

Definition 2: Let the Gold function 2 1()
k

F x x 

1 (/ 2)k n  be a power polynomial in (2)nGF and

let gcd(,)s k n . Then F is differentially 2s -uniform. If
n

s
 is

odd, that is, F is a permutation.

LKES has two types of S-box. The first S-box uses the Gold

function
52 1()F x x  in 9(2)GF and the second S-box uses the

Gold function
52 1()F x x  in 7(2)GF . These S-boxes provide

permutation function since gcd(5,7) gcd(5,9) 1  and
n

s
is odd,

also F is differentially 2 -uniform. In the case of 8(2)GF we

can't satisfy these two conditions [4]. The S-boxes
construction was attempt in the following way:

1- Initialize the S-box: The first column contains 0x00,
0x01,……, 0x0F. The second column contains 0x10,
0x11,… 0x1F etc., and so on. Thus, the value of the Byte
at column y and row x is [xy] where 1 32x  for the first

S-box and 1 8x  for the second S-box.

2- Map each byte in the S-box using the Gold function in

the finite field 9(2)GF for the first S-box and 7(2)GF for

the second S-box; the value {00} is mapped to itself.

3- Apply the following transformation to each bit of each
byte in the S-box:

'

i i ib b c  (2)

Where
 ic is the i

th
 bit of byte c ; with the value {1F7};that

is, (8 7 6 5 4 3 2 1 0, , , , , , , ,c c c c c c c c c) for the first S-box or with the

value {59};that is (6 5 4 3 2 1 0, , , , , ,c c c c c c c) for the second S-

box. The constant c was chosen so that the new S-boxes

have no fixed points [S-box (a) = a] and no "opposite fixed

points" [S-box (a) = a


], where a


is the bitwise complement

of a. Also this constant provides minimum correlation

between input and output 38 10  .

The inverse S-boxes is constructed by applying the
following steps:

1- Initialize the inverse S-box: The first column contains
0x00, 0x01,……, 0x0F. The second column contains
0x10, 0x11,… 0x1F etc., and so on. Thus, the value of
the Byte at column y and row x is [xy]
where1 32x  for the first S-box and 1 8x  for the

second S-box.

2- Apply the following transformation to each bit of each
byte in the S-box:

'

i i ib b c  (3)

Where
 ic is the i

th
 bit of byte c ; with the value

{1F7};that is, (8 7 6 5 4 3 2 1 0, , , , , , , ,c c c c c c c c c) for the first S-box

or with the value {59};that is (6 5 4 3 2 1 0, , , , , ,c c c c c c c) for the

second S-box.

3- Map each byte in the inverse S-box using the Gold

function inverse equation in the finite field 9(2)GF for

the first S-box and 7(2)GF for the second S-box; the

value {00} is mapped to itself.

The inverse of Gold function: Let n be odd

and gcd(,) 1n k  . Then 1() lF x x  where:

1

(1) 2
2

2
0

2 1
2 mod(2 1)

2 1

n

k n
ik n

k
i

l








  


 (4)

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

211

C. Permutation
The plaintext of LKES is 256 bits is divided into sub blocks
each of 32 bits. The plaintext is XORed with the subkey after
S-box step. Then every sub block is permuted by fixed
permutation. This fixed permutation, given in table 2, was
tested on a random sample of the messages, in each time gives
the minimum correlation coefficient value between input and

output data 30.05 10  .

TABLE 2 FIXED PERMUTATIONS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 20 12 25 21 29 28 27 13 3 8 16 6 10 18 7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

24 11 17 5 22 2 4 31 19 9 23 1 26 15 0 30

D. Convolution register
In this step, LKES makes every bit in plaintext depends on the
whole data block. At first, we divide the data in this step into
two halves each one is 128 bit (16 byte). We update the right
half bytes with the data from left half bytes and update the left
half bytes with the data from the right half depends on number
of rounds. We use by the following mathematica.9 sub-
program:

_ [_ ,32]

_ [_ ,32]

[[,2] 0,

[1, 4, ,

([1] 2)

([2] 10)

([3] 12)

([4] 20);

[]

Left half Partition Left half

Right half Partition Right half

If Mod r

For i i i

aux Leftbyte i

Leftbyte i

Leftbyte i

Leftbyte i

Rightbyte i a







   

   

  

  

 

 []]],

[1, 4, ,

([1] 2)

([2] 10)

([3] 12)

([4] 20);

[] []]]

ux Rightbyte i

For i i i

aux Rightbyte i

Rightbyte i

Rightbyte i

Rightbyte i

Leftbyte i aux Leftbyte i



   

   

  

  

 

 

Each byte in the one half is rotated to the left. The amount of
rotation tested to give us minimum correlation coefficient

30.8 10  . After this step, every byte in the one half is

modified by using all bytes in the plaintext block. So the
convolution register step provides high avalanche effect since
every bit in it depends in whole plaintext data.

E. Subkeys Generation
The LKES key expansion algorithm takes as input a 16-word
(64-byte) key and produces 128 words. This is sufficient to
provide 8-word (256 bits) subkeys for each of the 16 rounds of
the cipher. In subkey generation process, we try to have
maximum avalanche effect between the user key and the
ciphertext and to have minimum correlation coefficient. The
subkeys are generated by first divide the user key into blocks

each block with length 16 bits. To provide the maximum
avalanche effect in subkeys we first XOR the first block with
the second block in the user key. The resulting output is
replaced with old content of first block. Then we update the
key blocks from second block to 31

th
block by applying the

following operation:

[] [1] [1]new old oldkeyblock i keyblock i keyblock i    (5)

At final step we will be XORing the old content of first block
with the updating 31

th
 block in the key. The resulting output is

replaced with old content of 32
th

 block. Then we XOR the old
content of first block with the updating 32

th
 block in the key.

The resulting output is replaced with old content of first block.
In this step, each updating block is function of all blocks
before it. So if we exchange only one bit in user key, most of
output blocks will also exchange. To provide minimum
correlation coefficient, we apply S-boxes to the pervious
output array. Using S-boxes in subkeys generation make the
subkeys resist the known cryptanalytic attacks. We repeat the
S-boxes step eight times because we need 16 256-bit subkeys.
After each time using S-boxes we rotate the user key by 54
bits and repeat the mix blocks before using S-box again.

F. Encryption Process
Our proposal is purely block cipher. The input plaintext length
is 32 bytes. These bytes are divided into 8 sub-blocks each of
32 bits. The output of this system is also 8 sub-blocks arranged
sequentially each of 32 bits. These sub-blocks are combined
again to form 32 bytes blocks. The key length is 512 bits. This
key is divided into 16 subkeys each of 32 bits.

Description of a Single Round

The input blocks of 256 bits are divided into 8 sub-blocks each
of 32 bits. The first step we perform the shift row step. Then at
the S-boxes step, the input data is divided into sub blocks each
with length 16 bits. Each sub block entered the S-boxes will
divide into two parts. First part with length 9 bits is encrypting

using the S-box in 9(2)GF . These 9 bits represent the number

of row (first 5 bits) and the number of column (last 4 bits). The
second part with length 7 bits is encrypting using the S-box

in 7(2)GF . These 7 bits represent the number of row (first 3

bits) and the number of column (last 4 bits). After all rounds,
to resist the frequency analysis we perform the following step.

Shift data block

In this step we want to make sure that even for repeated data
blocks, the ciphertext will not be repeated blocks. First we
perform XORing between the first output byte from rounds
and the first byte of subkey. The 8 bits output represent the
number of bits rotating in the next input block. After the
encryption process for second block we apply the same
operation but using the second bytes of subkeys and so on.
The overall structure of cipher is shown in figure 2.

III. Security Analysis

A. Avalanche Effect
In cryptography, the avalanche effect refers to a desirable

property of cryptographic algorithms. The avalanche effect is

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

212

evident when an input is changed slightly (for example,
flipping a single bit) the output changes significantly (e.g. half
the output bits flip). In the case of quality block ciphers, such a
small change in either the key or the plaintext should cause a
drastic change in the ciphertext. Constructing a cipher to
exhibit a substantial avalanche effect is one of the primary
design objectives. The avalanche effect is calculated as:

No. of flipped in the ciphered text
Avalanche Effect= 100%

No. of bits in the ciphered text
 (6)

Figure 2 LKES overall structure

In our case, we take two plaintexts and two blocks of data
flipping one bit from everyone in different positions and
calculate the avalanche effect. Then we flip the user key in
different positions and calculate the avalanche effect [5]. The
following results are obtained after calculating the respective
Avalanche Effects.

TABLE.3 AV EFFECT FOR 1 BIT CHANGE IN THE PLAINTEXT

Plaintext
Length of
plaintext

in bits

Change first
bit in

plaintext

Change last
bit in

plaintext

Change
middle bit in

plaintext

Lucifer LKES Lucifer LKES Lucifer LKES

Case 1 158720 0.03% 29% 0.03% 0.08% 0.03% 12%

Case 2 135936 0.04% 17% 0.03% 0.09% 0.04% 25.1%

Case 3 1024 28% 49% 23% 50% 25% 54%

Case 4 1024 26% 51% 27% 52% 27% 52%

TABLE.4 AVALANCHE EFFECT FOR 1 BIT CHANGE IN THE USER KEY

Plaintext
Length of
plaintext

in bits

Change first
bit in key

Change
middle bit

in key

Change last
bit in key

Lucifer LKES Lucifer LKES Lucifer LKES

Case 1 158720 49.8% 50.1% 49.8% 50.1% 49.8% 50.1%

Case 2 135936 50.% 50.1% 50.1% 53.3% 49.9% 50.2%

Case 3 1024 43% 52% 53% 55% 43% 53%

Case 4 1024 51% 51% 46% 50% 50% 50%

The avalanche effect of the proposed algorithm is producing
very high as comparison Lucifer because in Lucifer if only one

bit changes, it effects on its data block not all the blocks, while
in LKES because we rotate the data block using the output
ciphertext and the user key, so if one bit changes it produces
different output.

B. Secret Data Groups
Considering the secret data used in Lucifer, the brute force
attack for the key in the case of 128 bit block

is 128 38(2 3.4 10)  . The brute force attack for the data block in

the case of 128 bit block is 128 38(2 3.4 10)  .Considering the

secret data used in LKES, the brute force attack for the key for

512 bits block is 512 1542 1.34 10  . The brute force attack for the

data block for 256 bits block is 256 772 1.2 10  .

C. Language Statistics
Language redundancy [6] is the greatest problem for any

cryptosystem. The cryptanalyst uses the language redundancy
to attack cryptosystems ciphertext. If the message is long
enough, the cryptanalyst computes the frequency of each of
the characters and consider different number of combinations
up to the length of the cryptosystem block. The cryptanalyst
will then try to estimate the plaintext from this statistical
result. A cryptosystem is considered unbreakable against
statistical analysis if its ciphertext has flat distribution. To
implement the strength of new LKES, Figs 3&4 show the
plaintext statistics of the used file. The ciphertext statistics of
Lucifer and new LKES are plotted in Figs 5 to 8.

Figure 3 Plaintext statistics of a text file

Figure.4 Plaintext statistics of repeated text file

Figure 5. LKES ciphertext statistics

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

213

Figure.6 Lucifer ciphertext statistics

Figure.7 LKES ciphertext statistics of a message consisting of 20 Kbytes of

character "e"

Figure.8 Lucifer ciphertext statistics of a message consisting of 20 Kbytes of

character "e"

D. NIST Statistical Suites
The National Institute of Standards and Technology

(NIST) [7] develops a Test Suite as a statistical package
consisting of 16 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by
either hardware or software based Cryptographic random or
pseudorandom number generators. These tests focus on a
variety of different types of non randomness that could exist in
a sequence. Some tests are decomposable into a variety of
subtests. The average values of the statistical tests for both
algorithms were given in Table 5.

TABLE.5 LKES VS. LUCIFER STATISTICAL TESTS

Test name Algorithm
LKES Lucifer

Frequency (Monobit) Test 100% Pass 99% Pass

Frequency Test within a Block 100% Pass 97% Failed

Runs Test 100% Pass 99% Pass

the Longest Run of Ones in a

Block Test
100% Pass 100% Pass

Binary Matrix Rank Test 100% Pass 100% Pass

Discrete Fourier Transform Test 100% Pass 100% Pass

Non-overlap Template Matching

Test
100% Pass 100% Pass

Overlap Template Matching Test 100% Pass 100% Pass

Maurer’s “Universal Statistical”

Test
100% Pass 100% Pass

Lempel-Ziv Compression Test 100% Pass 100% Pass

Linear Complexity Test 100% Pass 99% Pass

Serial Test 100% Pass 99% Pass

Approximate Entropy Test 100% Pass 99% Pass

Cumulative Sums (Cusum) Test 100% Pass 99% Pass

Random Excursions Test 99% Pass 99% Pass

Random Excursions Variant

Test(α = 0.05)
98% Pass 92% Failed

IV. Conclusion
 In this paper, we introduce a new cipher LKES based on

Lucifer cryptosystem. We have improved the security of
LKES by increasing the size of data block to 256 bits and the
size of key to 512 bits. Also we introduce a new S-box based
on one of APN functions "the Gold exponent function" in to

generation fields 7(2)GF and 9(2)GF . We use the S-boxes in

the key expansion procedure to make it strong against the
known attacks. In LKES system if we change a few bits in the
plaintext or the user key it cause more than half of the
ciphertext to be change. Finally, our proposal is rigid to
withstand the well-known methods of brute-force.

References

[1] A. Sorkin, (1984). "LUCIFER: a cryptographic algorithm". Cryptologia,

8(1), 22–35, 1984.

[2] K. Nyberg, "Deferentially Uniform Mappings for Cryptography",
Advances in Cryptology, Eurocrypt 93, Springer Verlag, 1994, vol. 765,
pp. 55-64.

[3] K. Nyberg and L. R. Knudsen, "Provable Security Against Differential
Cryptanalysis", Proceedings of Crypto '92 (to appear).

[4] C. Carlet. Vectorial (multi-output) Boolean Functions for Cryptography.
Chapter to appear in Cambridge University Press. Preliminary version
available at http://wwwrocq.inria.fr/codes/Claude.Carlet/pubs.html

[5] Amish Kumar, "effective implementation and avalanche effect of AES",
International Journal of Security, Privacy and Trust Management (
IJSPTM), Vol. 1, No 3/4, August 2012.

[6] Bruce Schneier, "Applied Cryptography, Protocols, Algorithms, and
Source Code in C" Wiley Computer Publishing, Second Edition, John
Wiley & Sons, Inc.

[7] NIST, “A Statistical Test Suite for Random and Pseudorandom
Generators for Cryptographic Applications”, NIST Special Publication
800-22, 2003.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

