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Abstract—in this article we discussed the numerical solution 

of Burgers’ equation using multigrid method. We used implicit 

method for time discritization and Crank-Nicolson scheme for 

space discritization for fully discrete scheme. For improvement 

we used Multigrid method in fully discrete solution. And also 

Multigrid method accelerates convergence of a basics iterative 

method by global correction. Numerical results confirm our 

theoretical results.  

Keywords—multigrid method, V cycle, Burgers’ equation, 

numerical scheme, Taylor series. 

I.  Introduction  

The study of nonlinear problem is very crucial job in the 

field of nonlinear science and engineering. The 1-D non-

linear partial differential equation is analogous to the one 

dimensional Navier-Stokes equation excluding the stress 

term and it was published in 1940 by J.M. Burgers. This 1-

D model used for the solution of Navier-Stokes equation, 

and also applied for the solution of laminar and turbulence 

flows. An interesting test case with shock generation is 

provided by the time evolution of a sinusoidal wave and  

last five decade researcer are working to accelerate the 

convergence of steady state. For fully discritization, we 

used backward difference method and Crank-Nicolson 

method to discritize the time direction and space direction, 

respectively. To reduce the nonlinearity term we have 

applied Taylor series expansion. And also Crank Nicolson 

discritization scheme is used to solve the Burgers’ equation, 

see in [6].   Multigrid method have been proved very 

successful in accelerating the convergence of elliptic system 

[1, 3 & 5]. Relaxation techniques is  very efficient in 

removing the error component with wavelength comparable 

to mesh size [1]. Multigrid method exploit the different grid 

size by solving the problem on different discretizations. 

Computational cost of multigrid method is proportional to 

the size of problem and it also applicable for higher 

dimension. Multigrid method is a method of mixing 

relaxation sweep with numerical solution and residual of 

coarse grids [4].                                                                             
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Traffic flow model have many application in defence such 

as traffic analysis for military intelligence counter 

intelligence and computer networking. 

II. Preliminary 
 

In this section, we discuss some preliminary to be used in 
the subsequent sub section. 

Consider traffic flow model on the Indian road highway. 
There are two parameters for traffic flow model such as 
velocity of car, density of car and traffic flow. Average 
number cars passing per hour per lane is called the traffic 
flow. Number of cars per mile is called density of the cars. 

Traffic flow = (Traffic density)* Velocity field. In 
mathematically it represents  

                   .)( uuf                                          (2.1) 

 Cars will be conserved on the highway, so by continuity 
equation it derived as follows:   
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Using (2.1) and (2.3) in (2.2), we arrive at  
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The equation (2.4) is known as Burgers’ equation.  The 
equation (2.4) could serve as a nonlinear analog of the Navier-
Stokes equations. The equation  (2.4) have a convective term, 
a diffusive term and a time-dependent term. When density of 
the car is very large, we will add the viscous term in equation 
(2.4). After adding viscous term in (2.4), we obtain  
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where u is the speed of traffic flow, µ is the kinematic 
viscosity,  x is  the spatial coordinate and   t is the time. The 
equation (2.5) is parabolic when the viscous term is included. 
If the viscous term is neglected, the remaining equation is 
hyperbolic. If the viscous term is dropped from equation (2.5) 
the nonlinearity allows discontinuous solutions to develop.  
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III. Multigrid method 

Classically multigrid method was developed in a fast and 

efficient way to solve algebraic system of equation resulting 

from discritization of partial differential boundary-value 

problems [4]. The multigrid technique consists of solving the 

algebraic system using a succession of grids of increasing 

mesh sizes. Subsequently multigrid method [1, 3 & 5] has also 

been extended to non-elliptic system. Basic multigrid method 

like the correction scheme and the full approximation scheme 

was developed by Brandt [2] for solving boundary-value 

problems. 

 

Algorithm 

Two-grid V-cycle [3] : 

 Iterate on  Ah.u = bh  to  uh ( say 3 Jacobi or 
Gauss-Seidel Step). 

 Restrict the residual uh = bh - Ah.uh  to the coarse 
grid by r2h = Rh

2h
.rh. 

 Solve A2h.E2h = r2h (or come close to E2h by 3 
iteration from E = 0. 

 Interpolation E2h back to E_h = I2h
h
.E2h. Add Eh  

to uh. 

 Iterate 3 more times on Ah.u = bh starting from the 
improved uh + Eh. 

                     A= Ah = original matrix. 

              R = Rh
2h 

= restriction matrix. 

              I= I
h
2 h=  interpolation matrix. 

 Step 3 involves a fourth matrix A2h to be defined 
now. A2h is square and it is smaller than the 
original Ah. 

              The coarse grid matrix is A2h = Rh
2h

.Ah.I
h

2h. 

 

 

Figure 1. V-cycle 

 

IV.  Full Discretization of 
Equation 

 

In this subsection, we have used the implicit scheme for time 

derivative and Crank-Nicolson scheme [7] for space to 

derivative to discritize the equation (2.5). Applying implicit 

scheme to nonlinear equation (2.5) is not quite as 

straightforward as for linear equation. Using backward 

difference scheme in time direction and central difference in 

space direction in equation (2.5), we obtain  
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When we use the implicit scheme in (4.1), the appearance of 

nonlinear terms creates a problem. Due to nonlinearity term in 

(4.1), the generated system will be system of nonlinear 

equations. To get the approximate solution, we need to apply 

Newton’s method. Our aim is to make the system (4.1) is 

linear and the resulting system will be system of linear 

tridiagonal equations. However, this problem can be overcome 

by using a Taylor series expansion, the descriptions are given 

in (4.2) - (4.4): 
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Rearrange the equation
 
(4.3) and written in tridiagonal form, 

we arrive at 
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A. Numerical Experiments 
 

Nonlinear hyperbolic equation (2.5) is solved by Crank 

Nicolson implicit scheme with multigrid method with initial 

condition u(x, 0) = sin (2πx), t > 0 and the boundary condition 

u (xi ,0) = u (xf, 0) = 0. For unsteady flow the shock formation 

is provided by the sinusoidal wave that’s reason we have 

chosen the initial condition as a sine function. 

 

B. Numerical Result and Discussion 
 

 
Figure 2. Numerical solution of Viscid Burgers’ equation with 

different viscosity 

 

 
 

Figure 3. Numerical solution of viscid Burgers’ equation with 

multigrid method  

 

 

C. Exact solution 
 

In this paper, we have implemented equation (2.5) with exact 

solution u(x, t) = e
t 
sin (2 π x). Here viscosity µ is given by 
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In the implementation procedure, we have followed backward   

Euler’s method for time discritization and central discritization 

scheme for space discritization. 

 

 
 

Figure 4. Profile of exact solution 
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In Figure 2, we have plotted the graph velocity vs. distance 

with different increasing viscosity, expected shock fade. We 

got the better result when we solve implicit scheme with 

multigrid method. Error is given in Table 1 and the error is 

removed by using of multigrid method. In this paper we use 

only V-cycle of multigrid method for improved result. 

 

Table 1 when time step ∆t = 0.01 

 

Table I 

 

Grid  Error = 

 || uE-uh|| 

Error =       

 ||uE-uh+M|| 

51X51 1.5114   1.2026 

101X101 7.6652   7.7848 

301X301 38.6014 38.6118 

601X 601   43.7403 43.7397 

 

 

Table 2 when time step ∆t = 0.02 

 

Table II 

 

Grid  Error = 

 || uE-uh|| 

Error =       

 ||uE-uh+M|| 

51X51 1.23676   1.2675 

101X101 10.3493 17.41844 

301X301 29.88544 29.88394 

351X 351 40.7719 40.77144 

 

 

In Table 1 and 2, we have considered uE is the exact solution, 

uh is the approximate solution based on implicit method and 

Crank Nicolson scheme and uh+M is the approximate solution 

with multigrid method. Column I error is always greater than 

column II for respective grid size, its means that our results are 

improved when I use multigrid method. 

 

 

Conclusion 

Implicit finite difference scheme for one dimensional viscous 

Burgers’ equation has been presented using Taylor series 

expansion. Numerical results are given in Table I and II, We 

got the improved results when we solve equation (2.5) using 

Implicit scheme with multigrid method and compare with 

exact solution of Burgers' equation. The advantage of this 

suggested method is that it is second order of accuracy with 

respect to time and distance. The effect of viscous term in 

Burgers’ equation is to diminish the amplitude of shock wave 

with respect to time and avoid the shock formation.    

 

Figure 5. Flow chart of Burgers’ equation solution with        

multigrid method 
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