

74

An efficient BISD Scheme for Diagnosis of Coupling

Faults

[Kirtisova Behera Manojit Panda Deepak Agarwal]

Abstract—As the use and density of memories in electronic

circuits is growing more and more, testing of memories and

diagnosing various faults present in them are becoming more and

more prominent now-a-days. In this paper, two new types of

hardware BISD circuits are designed for bit oriented memories.

The proposed BISD circuits can not only detect the coupling faults

but also locate the address of the victim cell as well as that of the

aggressor cell in the presence of a coupling fault. Above all this

circuit is very simple, easy to design and is expected to reduce the

testing time compared to the software based testing methodologies.

Keywords—Memory, fault model, March Test, BISD

I. Introduction
In recent years, memories have become the most universal

component. Most of the electronic circuits contain embedded

memory. As the VLSI technology moving into deep

submicron level, the density of memory is growing day by

day. Due to this dense integration, various types of faults are

encountered in memories which in fact decrease the

performance of the whole circuit. So testing of semiconductor

memories and detecting various types of faults present in them

is going to be of utmost importance. [1-4]Built-in self-test has

been proven to be one of the most cost-effective and widely

used solutions for memory testing, as it does not require

external test equipment, consumes very less time and

generates on-chip test pattern to provide higher controllability

and observability. The memory testing algorithm plays a very

important role in the diagnosis of memory. The algorithms

implemented to test memories can also be classified into two

types: Classical tests and March based tests. Some classical

tests like Zero-One and Checkerboard are simple and fast but

having poor fault coverage whereas tests like Walking zero-

one and GALPAT have a better fault coverage but with a large

testing time[5-7]. As compared to these tests, March based

tests are simple having higher fault coverage for which they

are being used widely in most modern memory BIST [8].

[9] Discusses a set of March tests together with methods to

make composite tests for collections of fault types. In [10]

With 17N Read/write operations, the algorithm for bit-oriented

memories can distinguish between stuck-at fault, state

coupling fault, idempotent coupling fault, and inversion

coupling fault.

Kirtisova Behera, Manojit Panda, Deepak Agarwal

National Institute of Technology, Durgapur

India

Moreover, the aggressor cell in case of a CF can be located by

applying an additional March-like algorithm with 3N

complexity. In addition to testing the embedded memories

using mach algorithm [9] and [10], diagnosis of fault sites and

repair by the redundant bit-lines to increase the yield is

necessary for large cores. Therefore, in [11], [12] built in self

diagnosis (BISD), built-in-self repair (BISR) and built in self

redundancy analysis (BIRA) technologies are becoming

inevitable, so far as overall test cost is concerned.

In this paper, we have introduced two new schemes of

hardware BISD circuits for embedded memories. The

proposed BISD circuits are capable of detecting faults as well

as the locations of aggressor and victim cells in case of any

coupling fault. Here, the 1
st
 BISD hardware approach is used

to locate the address of victim cell for coupling fault. Upon

receiving the address of victim cell, the second BISD circuit,

based on 3N algorithm [10], can locate the aggressor cell. The

discussed circuits in this paper are structurally very simple and

easy to design. Moreover, these circuits reduce test time and

test cost and thereby improving the yield of memory.

The paper is organized as follows. Section 2 defines fault

models and notations. In section 3, the 17N diagnosis

algorithm for bit oriented memories and algorithm for locating

the coupling faults are described. Section 4 introduces the

BISD hardware circuits for locating the victim and aggressor

cell. Finally section 5 concludes the paper.

II. Fault Models
A fault model is an engineering model of something that

could go wrong in the construction or operation of a piece of

equipment. From the model, the designer or user can then

predict the consequences of this particular fault. Fault models

can be used in almost all branches of engineering. As the cell

array dominates the silicon area of the memories, the faults

within the cell array are considered. The fault models that are

prominently found in semiconductor memories are considered

here.

A. Stuck-At Fault
A stuck-at fault is a particular type of fault where the logic

value of a line or cell sticks to one particular value (either 0 or

1).This usually happens when a cell or line gets shorted to

either supply(1) or ground(0). Stuck-at fault can be of two

types depending on the value the faulty cell or line

permanently holds. If the cell gets shorted with the supply, it is

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

75

called stuck-at-1 fault (S-A-1) and if it is shorted to ground

then it is called stuck-at-0 fault (S-A-0).

B. Transition Fault
Transition fault (TF) can be viewed as a special type of

SAF. This is the case when a cell fails to undergo a transition

from one particular logical value to another, i.e. either 1 to 0

or 0 to 1. If a cell fails to undergo up transition (0→1), then

the fault is called up transition fault denoted as <↑/0> and if a

cell fails to undergo down transition (1→0), then the fault is

called down transition fault which is denoted as <↑/1>.

C. Coupling Fault
 It involves two cells, A-cell (Aggressor cell) and V-cell

(Victim cell). If any operation performed to the A-cell forces

or changes the state of the V-cell, this is said to be coupling

fault. A-cell is coupling cell and V-cell is coupled. Coupling

faults (CF) can be of three types.

CF(Ap,As,Vs) represents the Coupling fault for bit-

oriented memory, where Ap € {H,L} represents the relative

position (higher or lower) of the aggressor with respect to the

victim, As €{0,1, ↑,↓} represents the state of the aggressor cell

that activates the fault, and Vs € {0,1, ↕} is the faulty state of

the victim cell. The symbol ↕ stands for either ↑ or ↓. For

example, CFin(H,↓, ↕) represents an inversion coupling fault

where the possible aggressor is located at a higher address

than the victim, and when the aggressor undergoes a down

transition, the victim is forced to invert its value.

1) Inversion CF: A transition (↑ or ↓) write operation to

the A-cell toggles or inverts the contents of V-cell. 0 to 1 (or 1

to 0) transition in one cell inverts the content of a second cell.

A CFin can be thought of as a D flip-flop with an extra clock

input and the Q’ output tied to the D input as in Fig. 1(b).

2) Idempotent CF: A CF whereby the transition write

operation (0 to 1 or 1 to 0) applied to the A-cell forces the

state of the V-cell to a certain value ‘0‘ or ‘1‘. An idempotent

coupling fault can be thought of as an S/R-type flip-flop with

an OR-gate in the Set or Reset line as shown in Fig. 1(a).

3) State CF: A CF whereby the state of A-cell forces

the state of V-cell to a fixed value is said to be State coupling

Fault. The CFst is of four subtypes: <1;0>, <1;1>, <0;0> and

<0;1>. It can be thought of as a D-type flip-flop with an

OR/AND-gate in the data line (D).

D. Neighborhood Pattern Sensitive
Fault

NPSF can be defined as a fault model which is

somewhat similar to coupling faults but in this case the no. of

aggressor cells is more than one.

1) Active NPSF: The base cell changes its contents due

to changes in the neighborhood pattern. A test that has to

detect and locate ANPSFs should satisfy the following

TABLE I. FAULTS COVERED BY 17-N ALGORITHM

requirement: each base cell must be read in state 0 and in

state1 for all possible transitions in the deleted neighborhood

pattern. There are two different possible values for the base

cell (0 and 1), k-1 ways of choosing the deleted neighborhood

cell which must undergo one of two possible transitions (↑ or

↓), and 2
k-2

 possibilities for the remaining neighborhood cell

contents. The total number of active neighborhood patterns

(ANPs) is 2* (k-1)*2*2
k-2

 = (k-1)*2
k
.

2) Passive NPSF: The contents of the base cell cannot

be changed due to a certain neighborhood pattern. The

necessary condition to detect and locate PNPSF: for each of

the2
k-1

 deleted neighborhood patterns, the two possible

transitions up and down of base cell must be verified.

Therefore, the total number of PNPSFs is 2*2
k-1

 = k*2
k
. The

total pattern count for active and passive neighborhood pattern

sensitive fault APNPSFs is therefore, (k-1)*2
k
 + 2

k
 =k*2

k
.

3) Static NPSF: The contents of a base cell is forced to

a certain or particular state due to a certain neighborhood

pattern. The necessary condition to detect and locate SNPSF is

that we must apply the 2
k
 combinations of 0s and 1s to the k-

cell neighborhood, and verify by reading each cell that each

pattern can be stored or not. It differs from Active and Passive

NPSF such that it need not have a transition to sensitize the

SNPSF.

The faults that are covered under the algorithm discussed

in this paper are given in Table-I.

III. March Algorithms
March tests are widely used to test and diagnose the

semiconductor memories if any fault found in it. The linear

complexity of these March tests computes with respect to the

number of memory cells which are to be tested. While

comparing them with the traditional testing methods, March

tests are found to be less time consuming as well as covering

more faults effectively.

Stuck At

Faults

Coupling Faults

SAF Static

Coupling

Fault(CFst)

Idempotent

Coupling

Fault(CFid)

Inversion

Coupling

Fault(CFin)

SAF(0) CFst(L,0,0) CFid(L,↑,1) CFin(L,↑,↕)

SAF(1) CFst(H,0,0) CFid(L,↑,0) CFin(L,↓,↕)

 CFst(L,0,1) CFid(L,↓,1) CFin(H,↑,↕)

 CFst(H,0,1) CFid(L,↓,0) CFin(H,↓,↕)

 CFst(L,1,0) CFid(H,↑,1)

 CFst(H,1,0) CFid(H,↑,0)

 CFst(L,1,1) CFid(H,↓,1)

 CFst(H,1,1) CFid(H,↓,0)

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

76

A March test usually consists of a number of March

elements represented as Ms where‗s‘ specifies the March

sequence number [9]. Each March element consist a certain

number of Read and/or Write operations to all cells according

to a predefined address order which may be ascending (⇑),

descending (⇓), or either (⇕). March algorithm is designed to

detect the fault in semiconductor memories. But the same

March algorithm cannot be used for diagnosis. Diagnosis in

this context means finding the fault type with the help of

syndrome and then locating the faulty cells. After applying

any March test, the generated syndromes are then compared to

the fault dictionary and the type of fault can then easily be

determined. Our current interest is to design hardware for

locating the faulty cells to cover all the coupling faults.

A. Algorithm for Syndrome Generation
of Coupling Faults

In this paper we have considered March-17N test due its

coverage of all Stuck-at as well as coupling faults [10]. The

March-17N RAM diagnosis algorithm is given below. Also

among all the March algorithms, March 17N diagnosis

algorithm has the lowest time complexity.

{ ⇕(w0); ⇑(r0,w1,r1); ⇕(r1); ⇑(r1,w0,r0);⇕(r0); ⇓(r0,w1,r1);
⇕(r1); ⇓(r1,w0,r0); ⇕(r0)}

For a given test algorithm, the corresponding dictionary of

fault syndromes is constructed each row of which corresponds

to a certain fault class. From the Table I, CFst(L,0,1) means

that state coupling fault, when the value of aggressor cell is 0,

with the address lower than the victim cell (indicated by an L),

then the victim cell is forced to 1; CFin(H,↑,↕) means

inversion coupling fault, i.e. if there is a transition arising in

the aggressor cell with the address higher than the victim cell

(indicated by an H), the content of the victim cell will be

inverted; and so on. Fig.2 describes the fault free content of a

4-bit memory. The read values of second March element from

each cell give the logic 0, since previous (i.e. first March

element) March operation has written logic 0. Fig. 3 describes

that if the second cell (i.e. address 01) gives the value 1 that

indicates that cell is faulty and called Victim cell.

B. Algorithm for locating the aggressor
cell of coupling faults

March-like algorithm for locating the aggressor cell was

reported in [10]. Assume that the position (address) of the

victim of a CF is represented by v and V denotes the fault-free

state of the victim. [10]The algorithm for locating the

aggressor is shown as follows:

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}

 Or

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}

The symbols ⇑ means that the operations are performed

from 0 to (v – 1) and ⇓ means the operations performed from

(N – 1) to (v + 1). wv and rv, represent the Write and Read

operations that are performed only to victim cell address v.

Also, the value A is determined by the state of the aggressor of

the CF after the above diagnosis test. For example, if we want

to locate the aggressor of a CFid (L,↑,0), then we have to take

A=l.

The worst case complexity of above algorithm is 3N since

the position of victim cell is 0 or N - 1. Depending on whether

the possible aggressor cell is located lower or higher than the

victim cell, one may select only the first or second part of the

algorithm. E.g., to locate the aggressor of CFin (L,↑,↕), the 1
st

March algorithm is selected. For example, CFid (L,↑,0) has

been diagnosed by the March-17N algorithm and the faulty

cell is the second bit in an 8-bit memory array. Here A=1 is

selected, so algorithm given below is applied.

{⇑ (w0); w1 1; ⇑ (w1, r1 1)}

The first two Write operations are used to initialize the

memory. The last March element writes 1 from 7th down to

the 3rd bit and at same time reads 1 (expected) in the 2nd bit.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

77

IV. BIST implementation

In this section, first we have described our hardware

approach to locate the victim cell of a coupling fault. Next, the

3N algorithm I used to design the hardware scheme to locate

the aggressor cell, depending on the victim cell. In this case

we have considered the location of aggressor cell is lower than

the victim cell.

A. Circuit to locate the Victim cell

The fig. 3 shows the hardware implementation of BIST to

locate the address of victim cell. Here the test controller is

used to controls the application of the different (March) test

phases, the address generation by, e.g., a linear-feedback shift

register (LFSR), and application of the data and control signals

such as R/W.

A comparator is used to compare the read and write bit. If

no error has been found then the output will be 0, otherwise it

will be 1. This output is fed to a demultiplexer as select line as

well as to the two m-bit latches as enable line where m is the

number of address lines of memory. For 1
st
 latch, error line is

fed directly whereas the 2
nd

 latch is fed by inverting it.

Demultiplexer input is coming from address generating LFSR.

During test application, when memory faults are detected,

the comparator output goes to 1 and the demultiplexer passes

the faulty address through O1 (victim cell address). If there is

no error present comparator output will be 0 and demultiplexer

will pass the input (fault free address) through the O0. We can

get the same address at the output of the 2
nd

 latch.

B. Circuit to locate the Aggressor cell

In this paper, a special type of circuit is proposed which
can identify the location of the aggressor cell in the presence
of a coupling fault. The circuit in Fig.4 can get the address of
the victim cell and the type of coupling fault present in it.
Using this information, circuit presented in fig.5 can easily
find out the location of the aggressor cell.

In this circuit, we have placed a special controlling circuit

inside the test controller named as ‗March Operation

Controller‘ which is used to control the March operation.

From Table-2, we get the output expression for March

operation controller. In this table, X and Y represent March

element number whereas Z represents operation r/w for each

March element. E.g. the test algorithm in [10] to locate the

address of aggressor cell is

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}

 Or

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}

Suppose we have taken the address of aggressor cell lower
than that of the address of the victim cell. Therefore we will
consider the 1

st
 algorithm. In that algorithm, the 1

st
 March

element (m0 i.e. xy=00) is ⇑(wĀ), 2
nd

 March element (m1 i.e.
xy=01) is wvV and the 3rd March element (m2 i.e xy=10) is
⇑(wA ,rv V). Operation number for wA is 0 and for rvV is 1
[Table I]. For each March element, z=0 represents write
operation and z=1 represents read operation [table III]. Table
IV explains the March operation controller value.

We have considered the address of aggressor cell to be
lower than the victim cell. The victim cell address is stored in
a buffer with the help of the circuit in Fig. 4. There is an
address generator which generates address from 0 to v-1. The
AV controller controls the address of the victim as well as the
aggressor cell through an MOC signal, during the cycle of
March sequence. This signal comes from the output of the
March element counter present inside Test controller. When
the MOC signal is 0, it passes the addresses from 0 to v-1 i.e.
aggressor cell address and when the signal is 1, it passes the
victim cell address to memory. Test controller is used to
control the application of different (March) test phases, MOC
signal, and application of data and controls the signals such as
r/w.

During the test application, output data is available for the
3

rd
March element in the algorithm for read operation which is

fed to the comparator as one input with the 2
nd

 input being the
true value of the victim cell. If the comparator output becomes
1 then the address of aggressor cell is latched.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

78

Conclusion

In this paper two hardware based BISD designs are

proposed for Bit-oriented memory. The main purpose of this

approach is to find the location of the victim cell and

aggressor cell of the coupling fault in the memory. As a result,

we are able to locate a large number of coupling faults at a

lower time complexity. Hence, the yield of the memory is

improved.

Acknowledgment
We would like to convey our utmost respect and hearty

thanks to our project guide Ms. Mousumi Saha, Asst. Prof,
Dept. of Computer Applications, NIT Durgapur for giving her
invaluable time from her busy schedule, sharing her
knowledge at each and every step and guiding us throughout
our work on this project.

References
[1] B. E Cockburn, ―Tutorial on semiconductor memory testing‖,J.

Electronic Testing: Theory and Application, vol. 5,pp. 321-336, 1994.

[2] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo,A. Burri, and D.
Medina, ―Industrial BIST of embedded RAMs‖, IEEE Design & Test of
Computers, vol. 12, no. 3,pp. 86-95, Fall 1995.

[3] C.-W. Wu, ―Testing embedded memories: Is BIST the ultimate
solution?‖, in Proc. Seventh IEEE Asian Test Svmp.(ATS), Singapore,
Dec. 1998, pp. 516-517.

[4] C.-T. Huang, J.-R. Huang, C.-E Wu, C.-W. Wu, and T.-Y. Chang, ―A
programmable BIST core for embedded DRAM‖,IEEE Design & Test of
Computers, vol. 16, no. I , pp. 59-70,Jan.-Mar. 1999.

[5] Breuer .A;Friedman A.d Diagnosis and reliable design of digital
systems.Computer science Press,Woodland Hills,california 1976.

[6] Knaizuk J;Hartman C.An optimalalgorithm for tesing stuck- at faults in
random access memories.IEEE TC. Vol. C-26,pp.11411144,1977.

[7] A.J van de Goor A.J Testing semiconductor memories theory and
practice.John wiley & sons,Chihester,UK,1991.

TABLE II. MARCH ELEMENT

X Y

Element

0 0 M0

0 1 M1

1 0 M2

TABLE III. MARCH OPERATION

Z Operation

0 Write

1 read

TABLE IV. March Element Controller

X Y Z F = march operation

controller value

0 0 0 0

0 1 0 1

1 0 0 0

1 0 1 1

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

79

[8] Allen C.cheng , ―COMPREHENSIVE STUDY ON DESIGNING
MEMORY BIST :ALGORITHM,IMPLEMENTATION AND TRADE
OFFS‖Digital system testing,project report.

[9] A. J. van de Goor, ―Using March tests to test SRAMs”,IEEE Design &
Test of Computers, vol. 10, no. 1, pp. 8-

14, Mar. 1993.M. Young, The Technical Writer's Handbook. Mill
Valley, CA: University Science, 1989.

[10] J.-F.Li,K-L.cheng,C.-T.Huang,and C.-W.Wu,‖March based RAM
diagnosis algorithm for stuck-at and coupling fauls‖,Proc.IEEE
ITC,2001,pp.51-55.

[11] I.Kim,Y.Zorian,G.komoriya,H.pham,F.P.Higgins,and
J.L.Lweandowski,‖‖Built in self repair for embedded high density
SRAM‖,in proc.IEEE VLSI systems(DFT),Albuqueque,Nov.1999,pp
1112-1119.

[12] R.P reuer and V.K. Agarwal,‖Built-in self-diagnosis for repairable
ambeded RAMs‖,IEEE Design & Test of computers,vol.10,no.2,pp.24-
33,une1993.

.

 Manojit Panda got his B.Tech.

degree in Electronics and

Communication Engineering from

Biju Pattnaik University of

Technology, Rourkela, Odisha in

the year 2010. He is now pursuing

his M.Tech. degree in

Microelectronics and VLSI from

National Institute of Technology,

Durgapur. His area of interest

includes digital system design,

circuit and memory testing.

 Kirtisova Behera received her

B.Tech degree in Electronics and

communication Engineering from

Biju Pattnaik University of

technology, Rourkela, Odisha in the

year 2007.She is now pursuing her

M.Tech degree in

Microelectronics and VLSI from

National Institute of Technology,

Durgapur. Her area of interest

includes VLSI design, memory

testing and Diagnosis.

 Deepak Agarwal has completed

his B.Tech Degree from Gautam

buddha Technical University,

Lucknow India in Electronics &

communication Engg. He is now

Pursuing his M.Tech degree in

Microelectronics & VLSI from

National Institute of Technology,

Durgapur, India. His area of

interest includes Digital Design,

microprocessor and memory

testing.

UACEE International Journal of Advancements in Electronics and Electrical Engineering – IJAEEE
 Volume 2 : Issue 2 [ISSN 2319 – 7498]

Publication Date : 05 June 2013

