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Abstract—As the use and density of memories in electronic 

circuits is growing more and more, testing of memories and 

diagnosing various faults present in them are becoming more and 

more prominent now-a-days. In this paper, two new types of 

hardware BISD circuits are designed for bit oriented memories. 

The proposed BISD circuits can not only detect the coupling faults 

but also locate the address of the victim cell as well as that of the 

aggressor cell in the presence of a coupling fault.  Above all this 

circuit is very simple, easy to design and is expected to reduce the 

testing time compared to the software based testing methodologies.  
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I.  Introduction 
In recent years, memories have become the most universal 

component. Most of the electronic circuits contain embedded 

memory. As the VLSI technology moving into deep 

submicron level, the density of memory is growing day by 

day. Due to this dense integration, various types of faults are 

encountered in memories which in fact decrease the 

performance of the whole circuit. So testing of semiconductor 

memories and detecting various types of faults present in them 

is going to be of utmost importance. [1-4]Built-in self-test has 

been proven to be one of the most cost-effective and widely 

used solutions for memory testing, as it does not require 

external test equipment, consumes very less time and 

generates on-chip test pattern to provide higher controllability 

and observability.  The memory testing algorithm plays a very 

important role in the diagnosis of memory. The algorithms 

implemented to test memories can also be classified into two 

types: Classical tests and March based tests. Some classical 

tests like Zero-One and Checkerboard are simple and fast but 

having poor fault coverage whereas tests like Walking zero-

one and GALPAT have a better fault coverage but with a large 

testing time[5-7]. As compared to these tests, March based 

tests are simple having higher fault coverage for which they 

are being used widely in most modern memory BIST [8]. 

[9] Discusses a set of March tests together with methods to 

make composite tests for collections of fault types.  In [10] 

With 17N Read/write operations, the algorithm for bit-oriented 

memories can distinguish between stuck-at fault, state 

coupling fault, idempotent coupling fault, and inversion 

coupling fault. 
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Moreover, the aggressor cell in case of a CF can be located by 

applying an additional March-like algorithm with 3N 

complexity.  In addition to testing the embedded memories 

using mach algorithm [9] and [10], diagnosis of fault sites and 

repair by the redundant bit-lines to increase the yield is 

necessary for large cores. Therefore, in [11], [12] built in self 

diagnosis (BISD), built-in-self repair (BISR) and built in self 

redundancy analysis (BIRA) technologies are becoming 

inevitable, so far as overall test cost is concerned. 

In this paper, we have introduced two new schemes of 

hardware BISD circuits for embedded memories. The 

proposed BISD circuits are capable of detecting faults as well 

as the locations of aggressor and victim cells in case of any 

coupling fault. Here, the 1
st
 BISD hardware approach is used 

to locate the address of victim cell for coupling fault. Upon 

receiving the address of victim cell, the second BISD circuit, 

based on 3N algorithm [10], can locate the aggressor cell. The 

discussed circuits in this paper are structurally very simple and 

easy to design. Moreover, these circuits reduce test time and 

test cost and thereby improving the yield of memory. 

The paper is organized as follows. Section 2 defines fault 

models and notations. In section 3, the 17N diagnosis 

algorithm for bit oriented memories and algorithm for locating 

the coupling faults are described. Section 4 introduces the 

BISD hardware circuits for locating the victim and aggressor 

cell. Finally section 5 concludes the paper.  

II. Fault Models 
A fault model is an engineering model of something that 

could go wrong in the construction or operation of a piece of 

equipment. From the model, the designer or user can then 

predict the consequences of this particular fault. Fault models 

can be used in almost all branches of engineering. As the cell 

array dominates the silicon area of the memories, the faults 

within the cell array are considered. The fault models that are 

prominently found in semiconductor memories are considered 

here. 

A. Stuck-At Fault 
A stuck-at fault is a particular type of fault where the logic 

value of a line or cell sticks to one particular value (either 0 or 

1).This usually happens when a cell or line gets shorted to 

either supply(1) or ground(0). Stuck-at fault can be of two 

types depending on the value the faulty cell or line 

permanently holds. If the cell gets shorted with the supply, it is 
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called stuck-at-1 fault (S-A-1) and if it is shorted to ground 

then it is called stuck-at-0 fault (S-A-0). 

B. Transition Fault 
Transition fault (TF) can be viewed as a special type of 

SAF. This is the case when a cell fails to undergo a transition 

from one particular logical value to another, i.e. either 1 to 0 

or 0 to 1. If a cell fails to undergo up transition (0→1), then 

the fault is called up transition fault denoted as <↑/0> and if a 

cell fails to undergo down transition (1→0), then the fault is 

called down transition fault which is denoted as <↑/1>. 

C. Coupling Fault 
 It involves two cells, A-cell (Aggressor cell) and V-cell 

(Victim cell). If any operation performed to the A-cell forces 

or changes the state of the V-cell, this is said to be coupling 

fault. A-cell is coupling cell and V-cell is coupled. Coupling 

faults (CF) can be of three types.  

CF(Ap,As,Vs) represents the Coupling fault for bit-

oriented memory, where Ap € {H,L} represents the relative 

position (higher or lower) of the aggressor with respect to the 

victim, As €{0,1, ↑,↓} represents the state of the aggressor cell   

that activates the fault, and Vs € {0,1, ↕} is the faulty state of 

the victim cell. The symbol ↕   stands for either ↑ or ↓. For 

example,  CFin(H,↓, ↕) represents an inversion coupling fault 

where the possible aggressor is located at a higher address 

than the victim, and when the aggressor undergoes a down 

transition, the victim is forced to invert its value. 

1) Inversion CF: A transition (↑ or ↓) write operation to 

the A-cell toggles or inverts the contents of V-cell. 0 to 1 (or 1 

to 0) transition in one cell inverts the content of a second cell. 

A CFin can be thought of as a D flip-flop with an extra clock 

input and the Q’ output tied to the D input as in Fig. 1(b). 

2) Idempotent CF: A CF whereby the transition write 

operation (0 to 1 or 1 to 0 ) applied to the A-cell forces the 

state of the V-cell to a certain value ‘0‘ or ‘1‘. An idempotent 

coupling fault can be thought of as an S/R-type flip-flop with 

an OR-gate in the Set or Reset line as shown in Fig. 1(a). 

3) State CF: A CF whereby the state of A-cell forces 

the state of V-cell to a fixed value is said to be State coupling 

Fault. The CFst is of four subtypes: <1;0>, <1;1>, <0;0> and 

<0;1>. It can be thought of as a D-type flip-flop with an 

OR/AND-gate in the data line (D). 

D. Neighborhood Pattern Sensitive 
Fault 

NPSF can be defined as a fault model which is 

somewhat similar to coupling faults but in this case the no. of 

aggressor cells is more than one. 

 

1) Active NPSF: The base cell changes its contents due 

to changes in the neighborhood pattern. A test that has to 

detect and locate ANPSFs should satisfy the following  

TABLE I.   FAULTS COVERED BY 17-N ALGORITHM 

requirement: each base cell must be read in state 0 and in 

state1 for all possible transitions in the deleted neighborhood 

pattern. There are two different possible values for the base 

cell (0 and 1), k-1 ways of choosing the deleted neighborhood 

cell which must undergo one of two possible transitions (↑ or 

↓), and 2
k-2

 possibilities for the remaining neighborhood cell 

contents. The total number of active neighborhood patterns 

(ANPs) is 2* (k-1)*2*2
k-2

 = (k-1)*2
k
. 

2) Passive NPSF: The contents of the base cell cannot 

be changed due to a certain neighborhood pattern. The 

necessary condition to detect and locate PNPSF: for each of 

the2
k-1

 deleted neighborhood patterns, the two possible 

transitions up and down of base cell must be verified. 

Therefore, the total number of PNPSFs is 2*2
k-1

 = k*2
k
. The 

total pattern count for active and passive neighborhood pattern 

sensitive fault APNPSFs is therefore, (k-1)*2
k
 + 2

k
 =k*2

k
. 

 

3) Static NPSF: The contents of a base cell is forced to 

a certain or particular state due to a certain neighborhood 

pattern. The necessary condition to detect and locate SNPSF is 

that we must apply the 2
k
 combinations of 0s and 1s to the k-

cell neighborhood, and verify by reading each cell that each 

pattern can be stored or not. It differs from Active and Passive 

NPSF such that it need not have a transition to sensitize the 

SNPSF. 

 
The faults that are covered under the algorithm discussed 

in this paper are given in Table-I. 

III. March Algorithms 
March tests are widely used to test and diagnose the 

semiconductor memories if any fault found in it. The linear 

complexity of these March tests computes with respect to the 

number of memory cells which are to be tested. While 

comparing them with the traditional testing methods, March 

tests are found to be less time consuming as well as covering 

more faults effectively. 

 

Stuck At 

Faults 

Coupling Faults 

SAF Static 

Coupling 

Fault(CFst) 

Idempotent 

Coupling 

Fault(CFid) 

Inversion 

Coupling 

Fault(CFin) 

SAF(0) CFst(L,0,0) CFid(L,↑,1) CFin(L,↑,↕) 

SAF(1) CFst(H,0,0) CFid(L,↑,0) CFin(L,↓,↕) 

 CFst(L,0,1) CFid(L,↓,1) CFin(H,↑,↕) 

 CFst(H,0,1) CFid(L,↓,0) CFin(H,↓,↕) 

 CFst(L,1,0) CFid(H,↑,1)  

 CFst(H,1,0) CFid(H,↑,0)  

 CFst(L,1,1) CFid(H,↓,1)  

 CFst(H,1,1) CFid(H,↓,0)  
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A March test usually consists of a number of March 

elements represented as Ms where‗s‘ specifies the March 

sequence number [9]. Each March element consist a certain 

number of Read and/or Write operations to all cells according 

to a predefined address order which may be ascending (⇑), 

descending (⇓), or either (⇕). March algorithm is designed to 

detect the fault in semiconductor memories. But the same 

March algorithm cannot be used for diagnosis. Diagnosis in 

this context means finding the fault type with the help of 

syndrome and then locating the faulty cells. After applying 

any March test, the generated syndromes are then compared to 

the fault dictionary and the type of fault can then easily be 

determined. Our current interest is to design hardware for 

locating the faulty cells to cover all the coupling faults. 

A. Algorithm for Syndrome Generation 
of Coupling Faults 

In this paper we have considered March-17N test due its 

coverage of all Stuck-at as well as coupling faults [10]. The 

March-17N RAM diagnosis algorithm is given below. Also 

among all the March algorithms, March 17N diagnosis 

algorithm has the lowest time complexity. 

{ ⇕(w0); ⇑(r0,w1,r1); ⇕(r1); ⇑(r1,w0,r0);⇕(r0); ⇓(r0,w1,r1); 
⇕(r1); ⇓(r1,w0,r0); ⇕(r0)} 

For a given test algorithm, the corresponding dictionary of 

fault syndromes is constructed each row of which corresponds 

to a certain fault class. From the Table I, CFst(L,0,1) means  

that state coupling fault, when the value of aggressor  cell is 0, 

with the address lower than the victim cell (indicated by an L), 

then the victim cell is forced to 1; CFin(H,↑,↕) means 

inversion coupling fault, i.e. if there is a transition arising in 

the aggressor cell with the address higher than the victim cell 

(indicated by an H), the content of the victim cell will be 

inverted; and so on. Fig.2 describes the fault free content of a 

4-bit memory. The read values of second March element from 

each cell give the logic 0, since previous (i.e. first March 

element) March operation has written logic 0. Fig. 3 describes 

that if the second cell (i.e. address 01) gives the value 1 that 

indicates that cell is faulty and called Victim cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Algorithm for locating the aggressor 
cell of coupling faults 

March-like algorithm for locating the aggressor cell was 

reported in [10]. Assume that the position (address) of the 

victim of a CF is represented by v and V denotes the fault-free 

state of the victim. [10]The algorithm for locating the 

aggressor is shown as follows:  

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}  

 Or 

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}                     

The symbols ⇑ means that the operations are performed 

from 0 to (v – 1) and ⇓ means the operations performed from 

(N – 1) to (v + 1). wv and rv, represent the Write and Read 

operations that are performed only to victim cell address v. 

Also, the value A is determined by the state of the aggressor of 

the CF after the above diagnosis test. For example, if we want 

to locate the aggressor of a CFid (L,↑,0), then we have to take 

A=l. 

The worst case complexity of above algorithm is 3N since 

the position of victim cell is 0 or N - 1. Depending on whether 

the possible aggressor cell is located lower or higher than the 

victim cell, one may select only the first or second part of the 

algorithm. E.g., to locate the aggressor of CFin (L,↑,↕), the 1
st
 

March algorithm is selected. For example, CFid (L,↑,0)   has 

been diagnosed by the March-17N algorithm and the faulty 

cell is the second bit in an 8-bit memory array. Here A=1 is 

selected, so algorithm given below is applied. 

{⇑ (w0); w1 1; ⇑ (w1, r1 1)} 

The first two Write operations are used to initialize the 

memory. The last March element writes 1 from 7th down to 

the 3rd bit and at same time reads 1 (expected) in the 2nd bit. 
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IV. BIST implementation  

In this section, first we have described our hardware 

approach to locate the victim cell of a coupling fault. Next, the 

3N algorithm I used to design the hardware scheme to locate 

the aggressor cell, depending on the victim cell. In this case 

we have considered the location of aggressor cell is lower than 

the victim cell.  

A. Circuit to locate the Victim cell 

The fig. 3 shows the hardware implementation of BIST to 

locate the address of victim cell. Here the test controller is 

used to controls the application of the different (March) test 

phases, the address generation by, e.g., a linear-feedback shift 

register (LFSR), and application of the data and control signals 

such as R/W.  

A comparator is used to compare the read and write bit. If 

no error has been found then the output will be 0, otherwise it 

will be 1. This output is fed to a demultiplexer as select line as 

well as to the two m-bit latches as enable line where m is the 

number of address lines of memory. For 1
st
 latch, error line is 

fed directly whereas the 2
nd

 latch is fed by inverting it. 

Demultiplexer input is coming from address generating LFSR. 

During test application, when memory faults are detected, 

the comparator output goes to 1 and the demultiplexer passes 

the faulty address through O1 (victim cell address). If there is 

no error present comparator output will be 0 and demultiplexer 

will pass the input (fault free address) through the O0. We can 

get the same address at the output of the 2
nd

 latch. 

B. Circuit to locate the Aggressor cell 

In this paper, a special type of circuit is proposed which 
can identify the location of the aggressor cell in the presence 
of a coupling fault. The circuit in Fig.4 can get the address of 
the victim cell and the type of coupling fault present in it. 
Using this information, circuit presented in fig.5 can easily 
find out the location of the aggressor cell. 

 

 

 

 

 

 

 

In this circuit, we have placed a special controlling circuit 

inside the test controller named as ‗March Operation 

Controller‘ which is used to control the March operation. 

From Table-2, we get the output expression for March 

operation controller. In this table, X and Y represent March 

element number whereas Z represents operation r/w for each 

March element. E.g. the test algorithm in [10] to locate the 

address of aggressor cell is 

{⇑ (wĀ); wv V; ⇑(wA ,rv V)}  

 Or 

{⇓ (wĀ); wv V; ⇓(wA ,rv V)}                     

Suppose we have taken the address of aggressor cell lower 
than that of the address of the victim cell. Therefore we will 
consider the 1

st
 algorithm. In that algorithm, the 1

st
 March 

element (m0 i.e. xy=00) is ⇑(wĀ), 2
nd

 March element (m1 i.e. 
xy=01) is wvV and the 3rd March element (m2 i.e xy=10) is  
⇑(wA ,rv V). Operation number for wA is 0 and for rvV is 1 
[Table I]. For each March element, z=0 represents write 
operation and z=1 represents read operation [table III]. Table 
IV explains the March operation controller value. 

We have considered the address of aggressor cell to be 
lower than the victim cell. The victim cell address is stored in 
a buffer with the help of the circuit in Fig. 4. There is an 
address generator which generates address from 0 to v-1. The 
AV controller controls the address of the victim as well as the 
aggressor cell through an MOC signal, during the cycle of 
March sequence. This signal comes from the output of the 
March element counter present inside Test controller. When 
the MOC signal is 0, it passes the addresses from 0 to v-1 i.e. 
aggressor cell address and when the signal is 1, it passes the 
victim cell address to memory. Test controller is used to 
control the application of different (March) test phases, MOC 
signal, and application of data and controls the signals such as 
r/w. 

During the test application, output data is available for the 
3

rd 
March element in the algorithm for read operation which is 

fed to the comparator as one input with the 2
nd

 input being the 
true value of the victim cell. If the comparator output becomes 
1 then the address of aggressor cell is latched. 
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Conclusion 

In this paper two hardware based BISD designs are 

proposed for Bit-oriented memory. The main purpose of this 

approach is to find the location of the victim cell and 

aggressor cell of the coupling fault in the memory. As a result, 

we are able to locate a large number of coupling faults at a 

lower time complexity. Hence, the yield of the memory is 

improved.     
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TABLE II.     MARCH ELEMENT 
 

 

X                Y 

 

Element 

0                 0 M0 

0                  1 M1 

1                  0 M2 

 

TABLE III.  MARCH OPERATION 

 

Z Operation 

0 Write 

1 read 

 

TABLE IV.       March Element Controller 

 

X    Y    Z F = march operation 

controller value 

0     0     0 0 

0     1     0 1 

1     0     0 0 

1     0     1 1 
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