
24

Container Architecture for Detection and

Prevention of Intrusions using virtualization

technique

Abstract- Network Intrusion Detection Systems

(IDSs) which are based on sophisticated algorithms

rather than current signature-base detections are in

demand. Web services have moved to a multi-tiered

design wherein the web server runs the application

front-end logic and data are outsourced to a

database or file server in order to enable

communication and the management of personal

information from anywhere. The proposed system is

Container based Intrusion Detection System, an

IDS system that models the network behavior of

user sessions across both the front-end web server

and the back-end database. This system used to

detect attacks in multi-tiered web services. Our

approach can create normality models of isolated

user sessions that include both the web front-end

(HTTP) and back-end (File or SQL) network

transactions. For websites that do not permit

content modification from users, there is a direct

causal relationship between the requests received by

the front-end web server and those generated for the

database back end. Virtualization is used to isolate

objects and enhance security performance.

Lightweight containers can have considerable

performance advantages over full virtualization

containers.

Keywords—double guard, multi-tiered web services,

virtualization.

S.Saravanan Department of Computer Science Engineering,
R.M.K.C.E.T

M.Ramakrishnan Department of Information Technology, V.E.C,
Surapet, Chennai

Baskar.M Department of Information Technology, R.M.K.C.E.T

Gnanasekaran.T Department of Information Technology,
R.M.K.C.E.T

 I. Introduction
Web applications are the most common way to make

services and data available on the Internet.

Unfortunately, with the increase in the number and

complexity of these applications, there has also been

an increase in the number and complexity of

vulnerabilities. Current techniques to identify

security problems in web applications have mostly

focused on input validation flaws, such as cross site

scripting and SQL injection, with much less attention

devoted to application logic vulnerabilities.

Application logic vulnerabilities are an important

class of defects that are the result of faulty

application logic [2]. These vulnerabilities are

specific to the functionality of particular web

applications, and, thus, they are extremely difficult to

characterize and identify. Learning-based anomaly

detection has proven to be an effective black-box

technique for detecting unknown attacks. However,

the effectiveness of this technique crucially depends

upon both the quality and the completeness of the

training data. Unfortunately, in most cases, the traffic

to the system protected by an anomaly detector is not

uniformly distributed. Therefore, some components

(e.g., authentication, payments, or content

publishing) might not be exercised enough to train

anomaly detection system in a reasonable time frame.

This is of particular importance in real-world

settings, where anomaly detection systems are

deployed with little or no manual configuration, and

they are expected to automatically learn the normal

behavior of a system to detect or block attacks. In this

work, we first demonstrate that the features utilized

to train a learning-based detector can be semantically

grouped, and that features of the same group tend to

induce similar models [6].

 II. Motivation

 Some previous approaches have detected

intrusions or vulnerabilities by statically analyzing

the source code or executables [1]. Other approaches

dynamically track the information flow to understand

propagations and detect intrusions [3]. In the

DoubleGuard, the new container-based webserver

architecture enables us to separate the different

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

25

information flows by each session. This provides a means of tracking the information flow from the

webserver to the database server for each session.

Our approach also does not require us to analyze the

source code or know the application logic. For the

static webpage, our proposed approach does not

require application logic for building a model.

 Validating input is useful to detect or prevent

SQL or Cross Site Scripting (XSS) injection attacks.

This is orthogonal to the DoubleGuard approach,

which can utilize input validation as an additional

defense [7]. However, we have found that

DoubleGuard can detect SQL injection attacks by

taking the structures of web requests and database

queries.

 III. Our Approach

 In the proposed model, Static Model building

algorithm is used. It employs a virtualization

technique to web request with the subsequent DB

queries. Thus, Our proposed architecture in Fig.1 can

build a causal mapping profile by taking both the

webserver and DB traffic into account. In addition to

this static website case, there are web services that

permit persistent back-end data modifications. These

services, which we call dynamic, allow HTTP

requests to include parameters that are variable and

depend on user input. Lightweight virtualization

technique is to assign each user‟s web session to a

dedicated container, an isolated virtual computing

environment.

A. User interface:

 This main module is responsible for accepting

user queries and to generate http requests. This

module is also responsible for displaying the query

results to the user after the query has been executed

by the web server.

B. Query classifier:

 This module is deployed between web based

applications and the back-end database server. The

SQL queries sent by the applications are captured and

sent to the IDS for analysis. The query classifier

module parses each incoming SQL queries that are

variable and depend on user input.

C. Fuzzy anomaly detection
module:

 The fuzzy decision manager first extracts from

the requested URL, the path to the web application

being invoked, along with the arguments passed to it.

 Fig.1 Container based IDS architecture

The fuzzy decision manager then looks up the profile

associated with the web application. A profile is a

collection of statistics associated with one specific

web application. The fuzzy decision manager present

in the profile is a set of keys and scores used to

evaluate the features of a query and operate in one of

two modes, learning or detection. In the learning

phase we use C4.5 classification technique which

models and builds a profile of the “normal”

Characteristics of a given feature of a query (e.g., the

normal lengths of values for attributes),[4] setting a

dynamic detection threshold for the attributes. During

the detection phase, models return an anomaly score

for each observed example of attribute values using

the fuzzy rules generated from the training phase.

This is just a probability value in the range of 0-1

indicating the degree of anomaly of the observed

value in relation to the existing profile for that query

which is computed using a fuzzy logic decision

manager.

D. Access control manager:

 The architecture of this anomaly detection

system necessitates the existence of an access control

manager between the query classification component

and web servers. This manager is utilized when a

malicious web request that was let through by the

query classifier to access the web server which can be

checked for privilege level using anomaly score. In

this system, access control can choose to update

privilege levels of the web request to control

malicious requests. This process involves

characterizing the incoming anomaly using fuzzy

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

26

rules and then generating updating messages and

finally updating the access privilege levels to reflect

the level of anomaly. In this three access levels

namely privilege user lever, application programmer

level and naïve user level are used. Queries with

privilege user and application programmer level are

sent to the smart server whereas the queries with

naïve user levels are sent to dump server.

 IV. Testing for Websites

 Once the model is built, it can be used to

detect malicious sessions. For our static website

testing, we used the production website, which has

regular visits of around 50-100 sessions per day. We

collected regular traffic for this production site we

used the attack tools listed in to manually launch

attacks against the testing website, and we mixed

these attack sessions with the normal traffic obtained

during the training phase.

The testing phase algorithm is as follows:

1. If the rule for the request is Deterministic Mapping

r ! Q (Q ¼6 ;), we test whether Q is a subset of a
query set of the session. If so, this request is valid,

and we mark the queries in Q. Otherwise, a violation

is detected and considered to be abnormal, and the

session will be marked as suspicious.
2. If the rule is Empty Query Set r ! ;, then the request

is not considered to be abnormal, and we do not mark

any database queries. No intrusion will be reported.
3. For the remaining unmarked database queries, we

check to see if they are in the set NMR. If so, we

mark the query as such.
4. Any untested web request or unmarked database

query is considered to be abnormal. If either exists

within a session, then that session will be marked as

suspicious.
 In our implementation and experimenting

of the static testing website, the mapping model

contained the Deterministic Mappings and Empty

Query Set patterns without the No Matched Request

pattern. This is commonly the case for static

websites.

 V. Performance Evaluation

A prototype of Container Architecture is

implemented using a webserver with a back-end DB.

We also set up two testing websites, one static and
the other dynamic. To evaluate the detection results

for our system, we analyzed four classes of attacks,

as discussed [10], and measured the false positive
rate for each of the two websites.

A. Implementation

We chose to assign each user session into a

different container; however, this was a design

decision. For instance, we can assign a new container

per each new IP address of the client. In our

implementation, containers were recycled based on

events or when sessions time out. We were able to

use the same session tracking mechanisms as

implemented by the Apache server (cookies,

mod_usertrack, etc.) because lightweight

virtualization containers do not impose high memory

and storage overhead. Thus, we could maintain a

large number of parallel-running Apache instances

similar to the Apache threads that the server would

maintain in the scenario without containers [9].

 We evaluated the overhead of our container-

based server against a vanilla webserver. In order to

measure throughput and response time, we used two

webserver benchmark tools: http_load and

autobench. The testing website was the dynamic blog

website, and both vanilla webserver and the

container-based webserver connected to the same

Mysql database server on the host machine. For the

container-based server, we maintained a pool of 160

webserver instances on the machine.

B. Attack Detection

 For the testing phase, we used the attack tools to

manually launch attacks against the testing website,

and we mixed these attack sessions with the normal

traffic obtained during the training phase. We used

the sqlmap which is an automatic tool that can

generate SQL injection attacks. Nikto, a webserver

scanner tool that performs comprehensive tests, and

Metasploit were used to generate a number of

webserver-aimed http attacks (i.e., a hijack future

session attack). We performed the same attacks on

both DoubleGuard and a classic three-tier

architecture with a network IDS at the webserver side

and a database IDS at the database side. As there is

no popular anomaly-based open source network IDS

available, we used Snort as the network IDS in front

of the webserver, and we used GreenSQL as the

database IDS.

 Furthermore, we performed the same test for

the dynamic blog website. In addition to the real

traffic data that we captured for plotting the ROC

curves, we also generated 1,000 artificial traffic

sessions using Selenium and mixed the attack

sessions together with all of them. As expected, the

models for the dynamic website could also identify

all of the same attack sessions as the static case.

 Our proposed architecture is not designed to

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

27

detect attacks that exploit vulnerabilities of the input

validation of HTTP requests. The various possible

attacks that can be detected and prevented in the

multi-tiered environment are listed as below.

1) Privilege Escalation Attack

 In Privilege Escalation Attacks, the attacker

visits the website as a normal user aiming to

compromise the webserver process or exploit

vulnerabilities to bypass authentication. At that point,

the attacker issues a set of privileged (e.g., admin-

level) DB queries to retrieve sensitive information.

We log and process both legitimate web requests and

database queries in the session traffic, but there are

no mappings among them. IDSs working at either

end can hardly detect this attack since the traffic they

capture appears to be legitimate. However,

DoubleGuard separates the traffic by sessions. If it is

a user session, then the requests and queries should

all belong to normal users and match structurally.

Using the mapping model that we created during the

training phase, DoubleGuard can capture the

unmatched cases.

2) Hijack Future Session Attack
(Webserver-Aimed Attack)

 Out of the four classes of attacks we discuss

[11], session hijacking is the most common, as there

are many examples that exploit the vulnerabilities of

Apache, IIS, PHP, ASP, and cgi, to name a few. Most

of these attacks manipulate the HTTP requests to take

over the webserver. We first ran Nikto. As shown in

our results, both Snort and Double-Guard detected

the malicious attempts from Nikto. As a second tool,

we used Metasploit loaded with various HTTP-based

exploits. This time, Snort missed most of these attack

attempts, which indicates that Snort rules do not have

such signatures. However, DoubleGuard was able to

detect these attack sessions. Here, we point out that

most of these attacks are unsuccessful, and

DoubleGuard captured these attacks mainly because

of the abnormal HTTP requests.

 Our proposed architecture can generate two

classes of alerts. One class of alerts is generated by

sessions whose traffic does not match the mapping

model with abnormal database queries. The second

class of alerts is triggered by sessions whose traffic

violates the mapping model but only in regard to

abnormal HTTP requests; there is no resulting

database query. Most unsuccessful attacks, including

404 errors with no resulting database query, will

trigger the second type of alerts

3) Injection Attack

 We describe how our approach can detect the

SQL injection attacks. To illustrate with an example,

we wrote a simple PHP login page that was

vulnerable to SQL injection attack. As we used a

legitimate username and password to successfully log

in, we could include the HTTP request.

 The HTTP request is obtained from the SQL

injection attacker. The parameter shown in the box is

the injected content. After normalizing all of the

values in this HTTP request, we had the same HTTP

request. However, the database queries we received

do not match the deterministic mapping we obtained

during our training phase.

 SQL injection attacks can be mitigated by input

validation. However, SQL injection can still be

successful because attackers usually exploit the

vulnerability of incorrect input validation

implementation, often caused by inexperienced or

careless programmers or imprecise input model

definitions.

4) Direct DB Attack

 If any attacker launches this type of attack, it

will easily be identified by our approach. First of all,

according to our mapping model, DB queries will not

have any matching web requests during this type of

attack. On the other hand, as this traffic will not go

through any containers, it will be captured as it

appears to differ from the legitimate traffic that goes

through the containers. In our experiments, we

generated queries and sent them to the databases

without using the webserver containers.

DoubleGuard readily captured these queries. Snort

and GreenSQL did not report alerts for this attack.

 Our proposed architecture offers the capability

of normalizing the parameters so that the user can

choose which values to normalize. For example, one

can choose not to normalize the value “admin” in

“user ¼ „admin‟.” Likewise, one can choose to

normalize it if the administrative queries are

structurally different from the normal-user queries,

which is common case. Addition-ally, if the database

can authenticate admin and non admin users, then

privilege escalation attacks by changing values are

not feasible. In addition, users with non admin

permissions can cause minimal (and sometimes zero)

damage to the rest of the system and therefore they

have limited incentives to launch such attacks. When

we deployed our prototype on a system that

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

28

employed Apache webserver, a blog application, and

a MySQL back end, Container architecture was able

to identify a wide range of attacks with minimal false

positives.

 VI. Conclusion

 A container based intrusion detection system that

builds models of normal behavior for multi-tiered

web applications from both front-end web (HTTP)

requests and back-end database (SQL) queries was

proposed. Unlike previous approaches that correlated

or summarized alerts generated by independent IDSs,

DoubleGuard forms container-based IDS with

multiple input streams to produce alerts. We achieved

this by isolating the flow of information from each

webserver session with a lightweight virtualization.

Furthermore, we quantified the detection accuracy of

our approach when we attempted to model static and

dynamic web requests with the back-end file system

and database queries. For static websites, we built a

well-correlated model, for detecting different types of

attacks.

 Acknowledgment

 The authors would like to thank the anonymous

reviewers for their valuable comments and

suggestions, which have greatly improved the quality

of the paper.

 References

 [1] S. Kumar, "Classification and detection of computer
intrusions", Ph.D. thesis, Purdue Univ., West Lafayette, IN, 1995.

[2] W. Lee and D. Xiang "Information-theoretic measures for

anomaly detection", In Proc. of the 2001 IEEE Symp. on Security
and Privacy, Oakland, CA, May, 2001, pp. 130-143.

[3] C. Anley, “Advanced Sql Injection in Sql Server Applica-

tions,” technical report, Next Generation Security Software, Ltd.,

2002.
[4] K. Bai, H. Wang, and P. Liu, “Towards Database Firewalls,”
Proc. Ann. IFIP WG 11.3 Working Conf. Data and Applications
Security (DBSec ‟05), 2005.
[5] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-Based
Signature Database for Hybrid Intrusion Detection Systems,”
Security and Comm. Networks, vol. 2, no. 6, pp. 457-475, 2009.
[6] D. Bates, A. Barth, and C. Jackson, “Regular Expressions
Considered Harmful in Client-Side XSS Filters,” Proc. 19th Int‟l
Conf. World Wide Web, 2010.
[7] M. Christodorescu and S. Jha, “Static Analysis of Executables
to Detect Malicious Patterns,” Proc. Conf. USENIX Security
Symp.,2003.
[8] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An Approach for the Anomaly-Based Detection of
State Violations in Web Applications,” Proc. Int‟l Symp. Recent
Advances in Intrusion Detection (RAID ‟07), 2007.
[9] H. Debar, M. Dacier, and A. Wespi, “Towards Taxonomy of
Intrusion-Detection Systems,” Computer Networks, vol. 31, no. 9,
pp. 805-822, 1999.
[10] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“Toward Automated Detection of Logic Vulnerabilities in Web

Applica-tions,” Proc. USENIX Security Symp., 2010.
[11] Y. Hu and B. Panda, “A Data Mining Approach for Database
Intrusion Detection,” Proc. ACM Symp. Applied Computing
(SAC), H. Haddad, A. Omicini, R.L. Wainwright, and L.M.
Liebrock, eds., 2004.
[12] Y. Huang, A. Stavrou, A.K. Ghosh, and S. Jajodia,
“Efficiently Tracking Application Interactions Using Lightweight
Virtualization,” Proc. First ACM Workshop Virtual Machine
Security, 2008.

About Authors:

S.Saravanan received M.E Computer Science and

Engineering from Anna

University and pursuing Ph.D in

Anna University, Chennai. He

is working as Assistant

Professor in R.M.K College of

Engineering and Technology.

His current research interests

include Mobile Adhoc network,

Computer networks and

network security.

M.Ramakrishnan received Ph.D from Anna

University, Chennai. He is

working as professor in Velammal

Engineering College. He is a

member of ISTE, CSI, IACSIT,

IAEME and IEEE. His current

research interests include

computer netwoks and network

security, wireless sensors

networks and image processing.

Baskar.M received M.Tech

Information Technology from

Sathyabama University and

pursuing Ph.D in Anna

University, Chennai. He is

working as Assistant Professor in

R.M.K College of Engineering

and Technology, Chennai. He is a

member of ISTE. His current research interests

include parallel and distributed systems, computer

networks and network security.

Gnanasekaran.T received Ph.D

from Anna University, Chennai.

He is working as professor in

R.M.K. Institutions. He is a

member of IEI, ISTE, IAENG

and ACEEE. His current research

interests include Wireless sensor

networks, WiMAX, Parallel and

distributed Systems, Computer networks, Mobile

Adhoc networks and Broadband wireless technology.

UACEE International Journal of Advances in Computer Networks and its Security - Volume 3: Issue 1 [ISSN 2250 - 3757]

