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Abstract— A Cheque Truncation System (CTS-2012) has been 

applied by the banks throughout the country.CTS means that 

instead of sending the cheques in physical form by collecting the 

bank to the paying bank, an electronic image of cheque is 

transmitted to the drawee branch for payment through the 

clearing house, thereby eliminating cumbersome physical 

presentation of the cheque to the paying bank. Thus, saving time 

and cost involved in the traditional clearing system. The 

transmission of data i.e. cheques images requires more 

bandwidth for transmission. To transmit the cheques images 

using minimum bandwidth, it is going to discuss the use of the 

“Discrete Wavelet Transforms Compression Techniques for 

cheques images transmission”. 

Keywords— Transforms, DWT, Compression,Quantization. 

I.  INTRODUCTION  

In general, image compression techniques can be broadly 

classified into: 

 Lossless compression 

 Lossy compression 

In lossless compression, every bit of information is 

preserved during the decomposition process. The 

reconstructed image after compression is an exact replica of 

the original one. Such scheme only achieves a modest 

compression rate. It is used in applications where no loss of 

image data can be compromised. In lossy compression, a 

perfect reconstruction of the image is sacrificed by the 

elimination of some amount of redundancies in the image to 

achieve higher compression ratio. However, no visible loss of 

information is perceived under normal viewing conditions [2]. 

The type of image compression scheme that is focused on is 

the lossy compression scheme. A general lossy image encoder 

system consists of the three operations as shown in Figure 1.1. 
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Fig: 1.1 Image Encoder Systems 

 

The transform operation is a linear transform that aims to 

reduce the entropy of the image. This operation is reversible 

and does not cause any loss of information to the image. An 

example of such a transform operation is Fourier-based 

discrete cosine transform (DCT) or wavelet-based subband 

coding. The quantization operation, which is a lossy operation, 

maps a large set of input image data to a smaller set of output 

image data, attempting to remove redundancies in the image. 

This process is irreversible and it introduces distortion. Some 

examples of quantization are scalar quantization and vector 

quantization [1, 2]. The entropy coding operation, which is a 

lossless operation, compresses the image further without the 

loss of information. The main idea this paper is to reduce the 

average number of bits to represent an alphabet by assigning a 

longer codeword to an unlikely alphabet and a shorter code 

world to a likely symbol. Some common examples of entropy 

coding are Run-Length Encoding, Huffman Encoding and 

Arithmetic Encoding. To reconstruct the image, the operation 

get reversed as shown in Figure 1.2.at each stage, an inverse 

operation will be carried out. 
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Decompressed Image 
                                          Fig: 1.2 Image De-coder Systems 
With the help of these two system the CTS system of the bank   

will able to compressed an electronic image of cheque is 

transmitted from the drawee branch for payment to the 

clearing house through wired or wireless network channel by 

utilizing the minimum bandwidth of network. 

II. TYPE OF TRANSFORM USED FOR IMAGE COMPRESSION. 

A. Fourier Transform. 

In the Fourier Transform, sinusoids are as the basis 

functions. Such functions have infinite energy across the 

domains and have been valuable in analyzing time invariant or 
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stationary phenomena. It can be computed using the following 

equation: 

                  

   F () =  ſe-jt f(t)dt  ………….(i) 
        - 

The FT gives the frequency information of the signal, 

which means that it tells us how much of each frequency 

exists in the signal, but it does not tell us when in time these 

frequency components exist. This information is not required 

when the signal is so-called stationary [2]. If there is a sudden 

change in time in the input signal, this transformation will 

result in the spreading of the frequency components 

throughout the entire duration of the signal. Thus, information 

about one instant of a signal cannot be obtained. Therefore this 

transformation is not suitable for non-stationary, time-varying 

phenomena whose frequency content changes with time [2]. 

B. Short-Time Fourier Transform. 

To overcome the limitation of the FT, a window-version of 

Fourier Transform known as Short Time Fourier Transform 

(STFT) was developed. In STFT, we can divide the non-

stationary signal into small segments where each segment of 

the signal is assumed to be stationary. Then we apply STFT on 

these segments using the following formula: 

                                                  

  STFT (t,) =  ſe-jt f(s) g (s-t)  ds…..(ii) 
                    

But again there is a resolution problem here. Once the size 

of the STFT.s window is chosen, the time-frequency 

resolution is fixed for the entire time-frequency plane as 

illustrated in Figure 2.1. Moreover, the resolution in time (∆t) 

and frequency (∆f) cannot be made arbitrarily small at the 

same time because their product is lower bounded by the 

Heisenberg inequality.  

∆ t∆f >    1       …………(iii) 

     4 
This inequality means that the trade off time 

resolution for frequency resolution and vice-versa. That is, for 

a good frequency resolution, poor time resolution has to be 

accepted. Likewise, for a good time resolution, it has to be 

settled for poor frequency resolution [2]. 

C. Wavelet Transform. 

The wavelet transform allows resolving the resolution 

problem that gets encountered in STFT. The basic functions 

allow to trade off the time and frequency resolution in 

different ways. To analyze a large region of low frequency 

signal, a wide basis function is used. Similarly, to analyze a 

small region of high frequency signal, a small basis function is 

to be used. The basic functions of the wavelet transform are 

known as wavelets. There are a variety of different wavelet 

functions to suit the needs of different applications. In general, 

a wavelet is a small wave that has finite energy concentrated 

in time. It is this characteristic about a wavelet that gives it the 

ability to analyze any time-varying signals [2, 5, and 9]. 

There are two types of wavelet transform which are 

discussed in this Paper. They are the continuous wavelet 

transform (CWT) and discrete wavelet transform.  (DWT). 

The main idea about the wavelet transform is the same in both 

of these transforms. However, they differ in the way the 

transformation is being carried out [1, 3, and 11].  
In CWT, an analyzing window is shifted along the time 

domain to pick up the information about the signal. This 
process is difficult to implement and the information that has 
been picked up may overlap and result in redundancy. In Still 
Image Compression using Wavelet Transform 8 DWT, signals 
are analyzed in discrete steps through a series of filters. This 
method is realizable in a computer and has the advantage of 
extracting non-overlapping information about the signal [4, 5].  

D. Continuous Wavelet Transform. 

In continuous wavelet transform (CWT), information about 

a signal is obtained by manipulating the wavelet functions 

along the time axis as shown in the following equation. 

 

 y (S , Ƭ ) = ſ f (t)  (t)  dt     ……………….(iv) 

 

 Where   (t) = 1/√S    t - Ƭ 

                                                           S 

 

The function,  (t), is called the mother wavelet. This 

function serves as a prototype for generating other window 

functions. The term translation,, refers to the location of the 

window. As the window shifts through the signal, the time 

information in the transform domain is obtained. The term 

scaling, S, refers to dilating or compressing the wavelet. The 

relationship between the time and frequency is shown in 

Figure 2.1. Each window corresponds to a value of the wavelet 

transform in the time-frequency plane. Note that the area of 

the windows is constant but the widths and heights vary. The 

parameter scale used in wavelet transformation is similar to 

the scale used in the maps. At high scale, the wavelet seeks for 

global information or low frequencies information about the 

signal. At low scale, the wavelet seeks for detailed information 

or high frequencies information about the signal [3, 4, and 7].  

 

 
           Figure 2.1: The relationship between the time and frequency 

At high frequencies, this window will have a 

narrower width that corresponds to good time resolution and a 

longer height that corresponds to poor frequency resolution. 
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At low frequencies, this window will have a wider width that 

corresponds to poor time resolution and a shorter height that 

corresponds to good frequency resolution. Such analysis 

approach is suitable for most signals since most of the high 

frequencies occur for a small duration of time while low 

frequencies occur for long duration of time [1, 2]. 

E. Discrete Wavelet Transform. 

      In the discrete wavelet transform, an image signal can be 

analyzed by passing it through an analysis filter bank followed 

by a decimation operation. This analysis filter bank, which 

consists of a low pass and a high pass filter at each 

decomposition stage, is commonly used in image compression 

[1, 2]. When a signal passes through these filters, it is split into 

two bands. The low pass filter, which corresponds to an 

averaging operation, extracts the coarse information of the 

signal. The high pass filter, which corresponds to a 

differencing operation, extracts the detail information of the 

signal. The output of the filtering operations is then decimated 

by two. A two-dimensional transform can be accomplished by 

performing two separate one-dimensional transforms. First, 

the image is filtered along the x dimension and decimated by 

two. Then, it is followed by filtering the sub-image along the 

y-dimension and decimated by two. Finally, the image is 

splitted into four bands denoted by LL, HL, LH and HH after 

one-level decomposition. Further decompositions can be 

achieved by acting upon the LL subband successively and the 

resultant image is split into multiple bands as shown in 

Figure2.2.  

 

 

 

 

 

 

 
                                                             

         (a)     (b) 

Figure 2.2: Two-dimensional  

Discrete Wavelet Transform: 

a) Original image, 

b) One level decomposition 

c) Two level decomposition 

 

 

 

 

 (c) 

In mathematical terms, the averaging operation or low pass 
filtering is the inner product between the signal and the scaling 

function () as shown in Equation , whereas the differencing 

operation or high pass filtering is the inner product between 

the signal and the wavelet function () as shown in Equation. 

Average coefficients, 

Cj (k) = <f (t),,u (t) > = ſ f(t) ,u (t) dt 

 

Detailed coefficients, 

dj (k) = <f (t), jk, (t) > = ſ f(t) jk, (t) dt 

 

The scaling function or the low pass filter is defined as 

   ,u (t) > = 2
ſ/2 ,(2

t
 t- k) 

The wavelet function or the high pass filter is defined as 

 

                          jk (t) = 2
ſ/2 


 
(2

ſ 
 t- k) 

Where j denotes the discrete scaling index and k denotes the 

discrete translation index. The reconstruction of the image can 

be carried out by the following procedure. First, up sample it 

by a factor of two on all the four subbands at the coarsest 

scale, and filter the subbands in each dimension. Then sum the 

four filtered subbands to reach the low-low subband at the 

next finer scale. Repeat this process until the image is fully 

reconstructed [1, 3, 4, 8, and 9]. 

In this paper, it is going to discussed working of“A DWT 

Compression Technique used for the Cheque Truncation 

System of Bank.” 

III. VARIOUS TYPES OF QUANTIZATION AND ENTROPY 

ENCODING. 

Quantization, is a process of mapping a set of continuously 

valued input data, x, to a set of discrete valued output data, y. 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                  

Figure 3.1: Quantizer 

The following are some of the scalar quantizers: 

 Uniform quantizer  

 Subband uniform quantizer 

 Uniform Dead-Zone Quantization  

 Non-Uniform Quantization 

The quantized data contains redundant information. It is a 

waste of storage space if we were to save the redundancies of  
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the quantized data. One way of overcoming this problem is to 

use entropy encoding. It is an example of a lossless data 

compression technique that provides a means of removing the 

redundancies in the quantized data without any loss of 

information [2]. 

The two types of lossless data compression schemes are:- 

 Huffman Encoding  

  Run-Length Encoding. 

IV. IMAGE COMPRESSION USING WAVELET TRANSFORMS. 

In this section, the compression techniques and steps used 

to compress a two-dimensional 256-by-256 gray-scale digital 

image are discussed.  

The steps that are used to compress this 2-D image are 

described as follows: 

1) Read the image from the source 

2) Perform operation for the image decomposition 

3) Use „wdencmp‟for compression processes of a signal 

or a image using wavelet. 

4) By varying the wavelets (W), decomposition level (n) 

and the Threshold value (thr), can change the 

compression level. 

5) Calculate the percentage of compression  

A. Wavelet Transform. 

The one-level decomposition process begins with the 

convolution of the low-pass filter with all the rows of the 

image, followed by a down sampling of two. Then, it 

continues with the convolution of the high pass filter with all 

the rows of the image, followed by a down sampling of two. 

This process is then repeated for all the columns of the image. 

If further decomposition operations are desired, they can 

be carried out by acting upon the LL sub-image successively. 

 
 

 

 

 

 

 

 

 

 

Figure 4.1 shows the output of two-level decomposition 

The following flowchart illustrates the 

implementation of the two-dimensional Discrete Wavelet 

Transform: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flowchart for general decomposition of two dimensional 
forward DWT. 

One point to note is that the size of the decomposed image 

still remains as a 256- by-256 image. However, the data type 

of the wavelet coefficients has changed from integer to 

floating data type. Therefore the overall size of the 

decomposed image has increased dramatically [3, 5, 6, and 7].  

To reconstruct the image, an inverse DWT is applied. The 

low pass coefficients are defined as: 

        1-3               3- 3             3+3                  1+3 

1                2              3                   4     

         42              42               42                     42 

And the high pass coefficients are defined as: 

        -1+3                 3+3                 3-3                 1-3                          

1=                2=                    3=                 4 =  

          42                42              42                  42     
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Figure 4.3: Flowchart for detailed decomposition breakdown of two 
dimensional forward DWT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                          
Figure 4.4: Flowchart for general reconstruction of two dimensional 

inverse DWT. 

The above flowchart illustrates the implementation of the 

two-dimensional Inverse Discrete Wavelet Transform.The 

reconstruction of the image starts from the most inner band. 

Assume a two level decomposition is carried out and the 

output is shown in Figure 4.4. To reconstruct this image, 

action is to be taken upon the sub-images of the second level. 

These include the LL2, HL2, LH2 and HH2 sub-images. 

These sub-images are passed to the inverse DWT operation to 

obtain the LL1 sub-image. Then this process is repeated until 

the recovery of the original image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4.5: Flowchart for detail reconstruction breakdown of two 
dimensional inverses DWT 

B. Algorithm  for Image Compression. 

In this section, the compression techniques and algorithms 

used to compress a two-dimensional 256-by-256 gray-scale 

digital image are discussed. These algorithms are implemented 

using Matlab 6.5.    

The steps that are used to compress this 2-D image are 

described as follows: 

 Read the image from the source. 

 Save the image in the matrix form . 

 Make subplot of original image titled as „Original 
Image‟. 

 Use „wdencmp‟for compression process of a signal or 
a image using wavelet. 

Start 

Convolute all rows with the 

low pass filter to obtain the 

low pass coeff. 
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Convolute all columns 
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 By varying the wavelets (W), decomposition level (n) 
and the Threshold value (thr), can change the 
compression level. 

 Calculate the percentage of compression by using 
following Equation:-                                                              

Perfo=100X (length (find (cxd==0))/length (cxd)) 

 Assign y=wcodemat for extended pseudo color matrix 
scaling. 

 Save the image in the matrix form. 

 Reconstruct the original image from X1 & X2, where, 
X1 taken as approximation coefficient and X2 taken as 
detailed coefficient. 

 Make subplot of compressed image titled as 
„compressed image‟ 

V. RESULTS 

The quality of image in the lossy compression technique is 

very important. During experimentation it is found that the 

factors such as decomposition (n) and image threshold (thr) 

affect the quality of reconstructed image. In this paper, stress 

is given on identification of the optimum values of n and 

threshold to get comparatively good quality reconstructed 

output. Accordingly Matlab program is developed to perform 

the wavelet compression, decompression for various values of 

n and threshold. The program also generates the analysis data 

and the same is plotted using Matlab for various values of n 

and threshold. In this regard the tool for measurement of the 

quality of image is human eye. The different compressed 

images & the related graph showing the relation between 

threshold levels and percentage compression at different 

decomposition levels. 

A. Observation Table for n=1. 

Sr.No Threshold Compression 
in Percentage 

                
1. 

                                           
5 

                                                   
56.1475 

                      
2. 

                                         
10 

                                     
60.6544 

                        
3. 

                                      
15 

                                 
63. 2489 

                    
4. 

                                       
20 

                                       
65.3341 

                      
5. 

                                         
25 

                                 
66.7132 

                     
6. 

                                       
30 

                                 
67.7408 

                      
7. 

                                       
35 

                               
68.6662 

            
8. 

                                      
40 

                        
69.4279 

              
9. 

                                 
45 

                              
69.9552 

 Figure5.1: Original image and compressed image of bank cheque at different 
threshold for first level decomposition. 

 

Figure5.2: Graphical representation threshold v/s Compression percentage of 
bank cheque for first level decomposition. 

B. Observation Table for n=2. 

Sr.No Threshold Compression in 
Percentage 

                
1. 

                                           
5 

                                 
66.6206 

                      
2. 

                                         
10 

                                     
72.2007 

                        
3. 

                                      
15 

                                 
75.5847 

                    
4. 

                                       
20 

                                       
78.2485 

                      
5. 

                                         
25 

                                 
80.1045 

                     
6. 

                                       
30 

                                 
81.5523 

                      
7. 

                                       
35 

                                    
82.8292 

            
8. 

                                      
40 

                        
83.9651 

              
9. 

                                 
45 

                              
84.8293 
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Figure5.3: Original image and compressed image of bank cheque at different 

threshold for second level decomposition. 

 

Figure5.4: Graphical representation threshold v/s Compression percentage of 
bank cheque for second level decomposition. 

VI. CONCLUSION 

Image coding standards  to date have used DCT-based 

encoding. However, it is likely that other less mature coding 

techniques will eventually prove capable of outperforming 

DCT-based compensation methods. For example, the most 

promising techniques could be based on wavelet transform as 

well as which exploits the knowledge of underlying images to 

be compressed. In this paper, we have proved that the quality 

of a lossy compressed cheque image depend on a number of 

factors. From the discussion. it has been gathered that the 

threshold level, decomposition level are some of the more 

important factors. These new approaches take into account the 

human visual systems (HVS) for selecting the technique   for 

the applications. Higher Compression Ratios can be achieved 

at the expense of the quality of the image by increasing the 

threshold & decomposition levels which requires minimum 

bandwidth for transmission of compressed cheque of banks  to 

the drawee branch for payment through the clearing house. 
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