
56

 Software Reusability: Possibilities From The

Exisiting Software

Kavita Sharma, Nisha Agnihotri, Minakshi Hooda

Abstract—Reusability is the likelihood a segment of source

code that can be used again to add new functionalities with

slight or no modification. Reusable modules and classes

reduce implementation time, increase the likelihood that

prior testing and use has eliminated bugs and localizes code

modifications when a change in implementation is

required. Subroutines or functions are the simplest form of

reuse. A chunk of code is regularly organized using

modules or namespaces into layers. Software reuse is the

process of creating software systems from existing software

rather than building them from new software. This paper

describes the software reuse possibilities and measures how

much code can be modified from the existing software? If

any problem occurs to the productivity and the comparison

of reusable types along with their properties. Finally the

reusable software and its cost also discussed.

Keywords— Software reuse, Systematic software reuse,

software development

I. Introduction
Software permeates our daily life. There is probably no other

human-made material which is more omnipresent than

software in our modern society. It has become a crucial part

of many aspects of society: home appliances,

telecommunications, automobiles, airplanes, shopping,

auditing, web teaching, personal entertainment, and so on. In

particular, science and technology demand high-quality

software for making improvements and breakthroughs.

Software Reuse is currently one of the most active and

creative research areas in Computer Science. First, we

analyze how some design processes, e.g. constructing a

problem representation, searching for and evaluating the

solution(s), and reuse processes, i.e. retrieving and using

previous solution(s), may interact.

Kavita Sharma, Asstt. Professor in Computer Science

DAV Centenary College Faridabad

India
sharma.kavita0033@gmail.com

Nisha Agnihotri, Asstt. Professor in Computer Science
DAV Centenary College Faridabad

India
nis123_agni@yahoo.co.in

Minakshi Hooda , Asstt. Professor in Computer Science

DAV Centenary College Faridabad

India

minakshi_hooda@rediffmail.com

As software systems become more and more complex,

software programmers needs to know a variety of

information and knowledge in various areas. “Information is

wealth”, i.e., the knowledge gathered during the development

stage can be a valuable asset for a developer as well as the

software company. During the software development process,

the management and maintenance of knowledge creation is

necessary thing. Then only that knowledge is integrated to

develop the innovative concept from the older one. So the

company must store and manage it for reuse.

A. History of Software Reuse
Software reuse began from the origin itself since the

programming starts. This is different field in software

engineering. However, Doug Mcilroy’s paper which

proposed basing the software factory on reusable

components. In late sixties software crisis developed and

managed these types of researches. In 1970s Academia

proposed some models of research regarding reuse

management in software field. After that in 1980s large scale

reuse programs are done, in this stage it reach the all

programmers to known that reusability saves time and cost.

The following shows that various peoples tell the definition

for Reuse:

“Reuse is the use of any information which a developer

may need in the software creation process” (Freeman,

1987)

“The use of everything associated with a software project,

including knowledge” (Basiliand Rombach, 1988)

B. Software Reuse
What is Software Reuse? Its process of creating software

system from existing software assets rather than building

software system from scratch. The development of new

software from the existing one. The modification or alteration

of the existing software into the new software. The known

concept which was used to integrate the innovative concept.

The Assets can be software components, software

requirement analysis manuals, and design models, database

schema, objects, code documentation, domain architecture,

standards, test scenarios, and plans. The existing software can

be from within a software system or other similar software

systems or widely in different systems. For example, Ms

Office 2003 a tool to create and to edit different types of

documents, worksheets, slides and databases. They came up

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

57

with the Ms Office 2007 which is the latest version of it. Just

like this there are so many examples we can consider as a

Software Reuse. It is hard to develop the software that

achieves Reliability, Portability, Extensibility, Flexibility,

predictability and Efficiency and very hard to developing

systematically high quality reusable software components

and framework. Those Reusable workings and frameworks

are naturally summary, which makes it hard to engineer their

we use Software Reuse? The Proper Reuse of software

process leads to increase the quality of product, increases the

reliability, productivity improvement, and reduces time to

market, reduce the cost of developing the product. It’s not a

myth. In short, the development of a reuse process and

repository produces a base of knowledge that minimizing the

amount of development work required for future projects,

improves in quality after every reuse and ultimately reducing

the risk of new projects that are based on repository

knowledge.

 Figure 1. Reuse Process Model

The above figure shows an organizational framework the

divides project’s reuse packaging activities from the project-

specific activities, which process models support the each

activity. The framework defines two separate organizations: a

project concern and an experience factory. The project

concern develops the product which was get source from the

packaged experience from prior and current developments. In

turns, the project offers its own experiences to other projects.

i.e., this developed project can act as existing source for

another new project. The experience factory stores the

current aspects as well as the existing packaging for use it

again.

 40% to 60% of code is reusable

 60% of design and code are reusable in

 business application

 75% of program functions are common

 15% of the code is unique

 15% to 85% -rates of actual and

 Potential reuse

C. Generation Vs. Composition

TABLE1. GENERATION VS COMPOSITION

Reuse Techniques Composition Generation

Reused component Building Blocks Patterns

Nature of

component passive

Atomic and
immutable

Diffuse and
malleable, active

Emphasis

Composition

Principles

Generators

Language-based
Generators

Examples

Function/class

Libraries, Unix filters

4th generation

Languages

Parser generators

The above Table inform us that the difference between the

composition and generation under the reusing techniques

such as Reuse component, Nature of the component,

Emphasis, and their corresponding examples.

D. Framework for reuse and flexibility
(Object oriented)

OOPs are the new concept of programming parallel to

Procedure oriented programming. It was introduced in late

80's.It considers the programming simulated to real world

objects. It helps in programming approach in order to built

robust user and limit friendly and efficient software and

provides the efficient way to maintain real world software.

Overall, three essential concepts comprise object technology:

information hiding, inheritance/polymorphism and dynamic

binding. These concepts are combined and create new

techniques of object technology. Moreover the object-based

and object-oriented programs are not automatically modified.

The programmer should modify them for create the new

concept. The coupling of components1 often manifests in the

source code. Figure 2 schematically outlines the problem. If

the right hand component should work with another

component, its source code has to be changed.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

58

E. Reusable Software

 Commercial off-the–shelf-COTS: The software

produced under this category meets the user’s

requirements exactly. It is optional of using additional

functions which was added to that the existing software.

The various parts of the COTS components were

supplied by its suppliers. The additional attachments are

tested and documented for the user reference. They are

stand alone applications such as Visual basic TM and

Sybase TM.

 GOTS (Government off-the-shelf): This is government

development software for their own purpose and it is not

for sale. This is very similar to the COTS application

except it is with / without documentation (not

compulsory).Moreover it is occasionally updated and

improved. Mostly it deals with GFI (Government

Furnished Information) only.

 Planned Reuse: The Planned reuse software is somewhat

differed from other application, it is planned and

designed from the existing software. Moreover it finds

the existing software’s drawbacks and provides solution

in the current developing software. So it is always

created with documentation for assist the users.

Sometimes it is updated and improved from the current

state.

 Incidental Reuse: The incidental reuse is not a standard

option for creation of reuse software. This is only

planned at the time of cost balance situation. Moreover it

is not improved or updated. The design for reuse is rarely

in this concept, mostly these type of software developed

in very low duration.

TABLE 2. COMPARISON OF TYPES OF REUSABLE SOFTWARE

The above table outlines the characteristic differences among

types of reusable software. The various reusable software are

categorized by its using areas and time which it was

developed. They are categorized as COTS, GOTS, Planned

Reuse and Incidental Reuse. They are differentiated under the

topics such as Documentation and Ready Status, Balancing

the Development cost Modification & Open Standard

reference Reuse Design & testing Updating and

Improvement.

F. Conclusion and Future work
Define abbreviations we conclude that reusing of software is

emerging technology, which saves the production cost,

improving the innovative technology from the older one. So

if we go for wrong track in new thing means, we return back

with the older concept. Reuse research has been ongoing

since the late 1960s and domain engineering research since

the 1980s. Much has been accomplished, but there is still

much to do before the vision of better system building via

reuse and domain engineering is completely achieved.

Though most organizations reuse components to save the

time and cost, reuse is never risk free.

 References

[1] Arun Sharma, Rajesh Kumar, P S Grover “Managing Component-

Based Systems With Reusable Components” International Journal of
Computer Science and Security, Volume 1 : Issue (2)

[2] Bruno Antunes, Paulo Gomes and Nuno Seco “SRS: A Software
Reuse System based on the Semantic Web” Universidade de Coimbra
3030 Coimbra.

[3] Capers Jones “Best Practices for Certifying Reusable Material “
Version 4.0 December 18, 2008

[4] Dan Galorath “Software Reuse and Commercial Off-the-Shelf
Software
Magazine”, 1995. 5. Bradford, Kathy and Lori Vaughan. Improve
Commercial-off- the-Shelf (COTS) Integration Estimates. Redondo
Beach: Northrup Grumman Mission Systems, 2004.

[5] Eng Huat Ng “Software Reusability and its Application to Interactive
Multimedia Learning System”, Byrom Street, Liverpool L3 3AF, UK
1998

[6] Gary Boetticher David Eichmann “A Neural Network Paradigm for
Characterizing Reusable Software “,NCC-9- 16, RICIS research
activity number RB12 ACOSM’93, Nov.18-1993

[7] Gianluigi Caldiera and Victor R.Basili University of Mary land
“Identifying and Qualifying reusable software components “, 0018-
916/91/0200-0061 IEEE Feb 1991

[8] Parvinder Singh Sandhu, Janpreet Singh and Hardeep Singh

Approaches for “Categorization of Reusable Software Components”,

Journal of Computer Science 3 (5): 266-273, 2007 ISSN 1549-3636

About Author (s):

 .

 Comme-

-rcial

off-the–

shelf

Government

off-the-shelf

Planned

Reuse

Incidental

Reuse

Documentation

and

Ready Status
yes sometimes Often sometimes

Balancing the

Development

cost

often often often often

Modification &

Open Standard

reference
often often Sometimes occasionally

Reuse Design

& testing usually often sometimes occasionally

Updating and

Improvement usually occasionally sometimes seldom

Kavita Sharma

Asstt. Professor in Computer Science,

DAV Centenary College, Faridabad,

India

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

