
43

Re-engineering Legacy Systems for

Modernization:The Role of Software Reuse
 Meena Jha and Liam O’Brien

Abstract—In this paper we outline our legacy modernization

approach that incorporates our reuse process and repository

which we have called the Knowledge Base Software Reuse

(KBSR) Process and the KBSR Repository. The KBSR

Process and Repository aim to give software engineers easy

access to reusable software artefacts and reusable

components within a defined process which we have

incorporated into our modernization process. We outline

how software re-engineering of legacy systems is used to

populate the repository through the use of architecture

reconstruction techniques to identify and categorize legacy

components and other artefacts and save the components

and associated information in the KBSR Repository to

support modernization. The KBSR Repository can contain

all categories of reconstructed software artefacts which have

the potential to be reusable assets. In the context of

modernization software re-engineering through architecture

reconstruction has a major role to play in software reuse. We

illustrate the use of the software re-engineering through

software architecture reconstruction and the KBSR Process

and Repository with a case study.

Keywords— Software Re-engineering, Software Reuse,

Knowledge Based Software Reuse Repository, Knowledge

Based Software Reuse Process.

I. Introduction
The lifetime of a software system is very variable. Some

organizations, banks and governments still rely on software

systems that are more than 20 years old. Many of these legacy

systems are still business critical [1, 2]. Yet, the value of the

legacy system investment tends to decline over time.

According to Lehman’s first law [17] software must be

continually adapted or it will become progressively less

satisfactory in "real-world" environments.

The benefits of software reuse have been widely accepted.

Re-engineering reclaims the software artefacts. O’Brien and

Smith [30] have emphasized the need of software architecture

reconstruction as a decision making tool to identify and

document components dependencies to get better

understanding of the potential for software reuse within a

legacy system.

Meena Jha

UNSW and CQUniversity

Australia, m.jha@cqu.edu.au

Liam O’Brien

Geosciences

 Australia,

William.OBrien@ga.gov.au

We have developed the Knowledge Based Software Reuse

(KBSR) Process and KBSR Repository for legacy system
modernization based on software re-engineering through
software architecture reconstruction. We validated our KBSR
Process on a case study using the Automatic Cane Railway
Scheduling System (ACRSS).

The remainder of the paper is organized as follows. Section

2 outlines related work on modernization and software reuse

and the motivation for developing our approach. Section 3

outlines an overview of our KBSR Process. Section 4

describes an overview of the KBSR Repository. Section 5

describes the case study the modernization of the Automatic

Cane Railway Scheduling System (ACRSS) using the KBSR

Process. Section 6 describes the phases to develop the KBSR

Repository to be used in the KBSR Process for modernization

of legacy system. Section 7 presents the KBSR Process for

modernization of a legacy system using ACRSS as a case

study. Section 8 summarizes and discusses our experience and

concludes the paper.

II. Background and Motivation
Re-engineering legacy systems for modernization aims to

retain and extend the value of the legacy systems investment

as it reuses the software artefacts already developed [8].
Modernization of legacy systems by reusing existing software

functionality and making it available as web services or using

it in other web environments has been done. Sneed and Sneed

[29] outline an approach for creating web services from

reusing host programs. Kontogiannis and Zhou [3] outline an

approach to migrate legacy applications through identification

of the major legacy components and reusing these procedural

components in an object-oriented design, specifying the

interfaces, automatically generating the wrappers and

seamlessly interoperating them via HTTP based on SOAP

messaging. Litoiu [4] outlines issues such as performance and

scalability related to reuse and migration of legacy

applications to web services.

Given the attractive payoff of reusing software artefacts,

there have been several efforts undertaken to discuss the topic

of reusability [39, 40and 41], including software reusability in

practice [42, 43]. Developers are adopting many of these reuse

approaches, including reuse in product lines [44] and design

patterns [45]. Software modernization uses all the phases of

software development life cycle. software development has

been strongly criticized [15, 46]. One of the reasons of

criticism is the long development time. An obvious goal is to

speed up development processes by reusing already developed

software artefacts. Our survey has also reported many benefits

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

44

of software reuse such as quicker time to market, better use of

resources, increased quality, reduced software risk, and

reduced development cost [4, 5, and 16].

The risks of redevelopment suggest that there is a need to

reuse existing software artefacts, components, software assets,

application requirements, source code, etc for modernization

of the legacy systems. To make software reuse an integral

phase in software development or in legacy system

modernization all reusable software artefacts, components,

assets etc. should be made easily available to software

engineers. This can be made possible only if a reuse repository

is developed to store all of the knowledge base of reusable

software artefacts, reusable components, previous software

development experiences, etc. We propose such a repository

and call it the Knowledge Base Software Reuse (KBSR)

Repository. The KBSR Repository can contain all categories

of reusable software artefacts.The development of a KBSR

Process which uses software re-engineering along with an

associated KBSR Repository will help to systematize the

software reuse process and provide the repository to store the

reusable components and other reusable software artefacts and

capture current and past knowledge of software reuse.

There are several areas in which knowledge bases can be

used to support the software development process. These areas

include supporting the expert nature of software design and

coding, facilitating the reuse of software components and

artefacts, and providing domain knowledge to support

software reuse and in the implementation effort [17]. Our

literature survey [18, 19, and 20] shows that there are several

software reuse processes. Bauhaus [18] is a knowledge-based

software parts composition system shell. LaSSIE [19] is a

knowledge based software information system. It has

knowledge representation for software objects and its

relations, and it provides functions to query and browse

software objects. Software Components Catalogue [20] is

another knowledge-based system for software reuse. It utilizes

a conceptual dependency database describing software

components and their relations, than matches users requests

for software components with description of components

which satisfy these requests.

Our KBSR Repository re-engineers and stores knowledge

developed during software development for reuse and for

modernization of legacy system KBSR Process is used where

KBSR Repository is an integral part. None of the

modernization approaches make the use of re-engineering and

knowledge-based software reuse.

I. An Overview of the KBSR
Process

During software development or modernization, software

engineers and developers first select a software process e.g.

agile vs waterfall that is tailored for the project goals and other

Resource constraints and then enact the process as a guide for

software engineers and developers. Software developers

generally follow the process for the roles they play as to what

development activities to perform and when to perform them

[22]. When the Knowledge Based Software Reuse (KBSR)

Process is utilized, management and reuse of software

artefacts becomes a necessity.

A KBSR Process involves two necessary software reuse

phases to help the software engineers and developers develop

a software system with reuse. These phases are:
i. Re-engineer the legacy system components to develop the

KBSR Repository (for reuse using Software Architecture

Reconstruction), and

ii. Use the KBSR Repository in the modernization of the system

(with reuse).

Figure 1 shows the overview of the KBSR Process. It

includes the KBSR Repository and a complete framework

where the KBSR Repository is being used for modernization

of a legacy system or development of a new software system

based on the reusable artefacts found in the KBSR Repository.

Once the KBSR Repository is populated it is going to store the

reusable software artefacts and components. This KBSR

Repository can then be used in the KBSR Process for

reuse/with reuse development or modernization of the

software.

KBSR Repository

New Requirements/ Legacy

Systems

New System/ Modernized

System

R
e-

en
gi
ne

er
ed

 C
om

po
ne

nt
s
fo

r

R
ep

os
ito

ry

W
ith R

euse-For R
euse

Transformed System

 Figure 1: Overview of the KBSR Process

Our studies have [4, 5] shown the problems related to

vertical and horizontal reuse. Our KBSR Process can be used

for both types of reuse. It allows the reusable components

from a system/domain and from outside the domain to be

placed in the repository. It supports the reuse of software

components and the development of software components for

reuse. So software with reuse and for reuse are also

categorized and incorporated in the development of a software

system
Many legacy systems can be modernized using our KBSR

Process and with time our KBSR Repository is going to grow
large to store most of the required reusable software artefacts.
It can serve as one single point to look for reusable software
resources for all software engineers and developers within an
organisation. Our approach of using a KBSR Repository may
significantly improve the software reuse in the software
industry. It is well understood that present software
development or modernization approaches are not adequate
for meeting the software reuse demand [17].

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

45

II. An Overview of the KBSR
Repository

The KBSR repository consists of following reusable

software artefacts:
 Components from the market

 Components from other sources

 Software patterns from other sources

 Software patterns internal to organization

 Internal Component libraries

 Other reusable artefacts from legacy systems

All the artefacts and components from any software
organization can contribute to our KBSR Repository. Once the
artefacts and components are re-engineered they should be
made available for/with reuse so that other organizations
involved in the development of a new system or
modernization of legacy system should able to reap the
benefits of already developed components.

III. A Case Study-ACRSS System
The case study used is the Automatic Cane Railway

Scheduling System (ACRSS) [21]. ACRSS is a computer-

based system developed in 1987 to solve the cane railway

scheduling problem. ACRSS consists of 194 subroutines and

the 50,000 lines of code. All the reusable artefacts extracted

from ACRSS legacy systems are stored in the KBSR

Repository for/with reuse. Below we discuss each activity in

detail and how we applied the KBSR Process to our case study

of ACRSS in the following sections. We have worked at the

subroutine level to re-structure the code for the ACRSS

system [23].

IV. Re-engineer the Legacy
System to develop the KBSR

Repository
Re-engineer the legacy system to develop the KBSR

Repository using SAR requires three activities. These

activities are as follows:
 Activity 1: Identify Reusable Artefacts,

 Activity 2: Classify Reusable Artefacts,

 Activity 3: Store Reusable Artefacts in the KBSR Repository.

The growing concern in finding reusable software artefacts

and the complexity of managing these software artefacts for

reusability [4, 5] has led us to devise the KBSR Repository

which reduces the complexity of identifying and managing the

software reusable artefacts. The products of each phase of

developing the KBSR Repository serve as an input to next

phase. These phases are developed to address the issues

identified by our survey respondents [4, 5] such as: software

engineers cannot find what software artefact to reuse and

where to find reusable software artefacts.

V. Use the KBSR Repository in
the Modernization of Legacy

System

The activities involved in using the KBSR Repository in the

modernization are:
 Activity 1: Analyse Problem

 Activity 2: Retrieve Reusable Artefacts

 Activity 3: Understand Reusable Artefacts

 Activity 4: Select Best Reusable Artefacts

 Activity 5: Adapt and Reuse Reusable Artefacts

Below we illustrate the use of of the KBSR Repository in the

KBSR Process to modernize the ACRSS legacy system.

A. Activity 1: Analyse Problem

In this activity we analyse the problems associated with the

legacy system. The first question is why modernization is

required for the existing system. What problems are being

faced while keeping the existing system running? There could

be number of quality issues such as reliability, maintainability,

security, dependability, etc. There could also be a requirement

to modernize the legacy system to be compatible with the new

technology. Whatever may be the reason for modernization of

legacy systems the problem needs to be analysed as the first

phase to use the KBSR Repository for the modernization of

legacy systems.

Software architectures can be developed for enhanced

understanding and looking in depth analysis of the problem. In

order to modernize the legacy system we need to identify the

dependencies of legacy components. Dependencies include:
 Data dependencies where global data is shared between a

component and other parts of the system.

 Functional dependencies where a component uses other parts of

the system in order to carry out its functionality or other parts

of the system use the component.

The visualization of architectural views can help in finding out

the answers to the questions, which can form the basis of the

restructuring. Some of the questions include:
 What are the subsystems or components of the software

system?

 How should the interfaces between components be structured?

 What are the characteristics of the component communication?

Pinkney [21] worked on the modifications of the source

code using FORTRAN 77. Values from previous versions of

the ACRSS system were analysed to assess maintainability of

the system.

We analysed the ACRSS system for modernization for

better maintainability. The existing problem descriptors were

old monolithic legacy source code which stopped evolving and

were difficult to maintain. We chose a few subroutines as

described in Section 5 to modernize using the KBSR Process.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

46

B. Activity 2: Retrieve Reusable
Artefacts

The finding process involves more than just locating an

exact match. It includes locating highly similar components

because even if a target component must be partially

redeveloped—rather than be reused in total—an example

similar to the ideal component can reduce the effort and

eliminate many defects [29]. Due to the difficulty of finding

an exact match, artefacts become less and less reusable the

more specific they become. Atkinson [35] has suggested a

unifying model for retrieval from reusable software libraries.

His retrieval method is based on identifying the nature of the

indices used as representation of components such as external

indices, internal static indices, and internal dynamic indices.

External indices are keywords faceted [30] and feature based

[31] classification techniques all seek to find relevant

components based upon controlled vocabularies, properties

and ontologies external to the class. Internal Static Indices is

based on structural matching techniques, most probably

signature [32] and specification matching [33, 34], techniques,

seek to find relevant components based upon elements of the

structure of the software components. Internal dynamic

Indices are based on behavioural retrieval technique to take

advantage of distinguishing property of software-

executability. Behaviour based technique [35, 36, 37] seek to

find relevant components by comparing input and output

spaces of components.

C. Activity 3: Understand Reusable
Artefacts

We generated the complete description of the reusable

artefacts as stated in Table 1 so that the software engineers can

understand what objects have been retrieved. We used the

ARMin reconstruction tool [38] to re-construct the

architecture of the ACRSS system. The architectural analysis

of the ACRSS system made it more understandable. We

documented our findings and worked on what subroutines are

loosely cohesive, and highly coupled. We also documented the

dependency graph as the type of software artefact which

suggested the characteristic of each subroutine under

examination.

D. Activity 4: Select Best Reusable
Artefacts

All system development is driven by requirements, whether

they are documented or not. Even verbal directions count as

system requirements, albeit ones having a high tendency to be

misunderstood. Architectural analysis uses these requirements

to derive a system structure that provides an understanding of

the system as the software engineers created code. This system

form may be a layered architecture, where all of the system

components reside in well-defined system layers, or other

structures (such filter/pipe architectures for flow-through

signal processing). The key to this analysis is to identify the

requirements that have the highest impact on overall system

structure. These ―architectural drivers‖ are typically the ones

that use the highest amount of system functionality, and are

the more complex areas of the application.

At the end of this phase we could select the best reusable

artefacts. We had very old documentation of the ACRSS

system which was out of sync with the running system. We

updated it and made it suitable for reuse.

E. Activity 5: Adapt and Reuse
Reusable Artefacts

Adaptation, the lifeblood of software reusability, is the

customization of the reusable artefacts to fit the new problem.

This changes perception of a reusability system from a static

library of rock-like building blocks to a living system of

components that spawn, change, and evolve new components

with the changing requirements of their environments [42].

The major steps involved in adaptation are figuring out what

to adapt and adapting it.

Logical design of the legacy system was very complex to

understand. There were lot of dependency between

functions/methods. We created clusters of re-structured

methods to combine them in a class and worked on

generalization and specialization rules so that inheritance,

encapsulation and polymorphism of OO design can be applied.

VI. Discussion of the Result and
Conclusion

The development of a Knowledge Base Software Reuse

Process with an associated KBSR Repository systematizes the

software reuse process and provides the repository to store the

reusable components, reusable software artefacts and capture

current and past knowledge of software reuse with the help of

software re-engineering and architecture reconstruction.

This also provides a mechanisms to locate reusable software

artefacts and components from reuse repository, adapt them (if

necessary) and even create new ones making use of the

information provided by other similar software reusable

components and software reusable artefacts. Software

engineers now know exactly where to look for reusable

software artefacts. This addresses the major issues and

concerns of software reuse which was hindering software

reuse from being a systematic process.

References

[1] R.W. Selby, ―Enabling Reuse-Based Software Development of Large

Scale System‖, IEEE Transaction on Software Engineering, Vol 31, No
6, June 2005.

[2] W.B. Frakes, and K. Kang, ―Software Reuse Research: Status and
Future‖, IEEE Transaction on Software Engineering, Vol 31, No 7, July
2005.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

47

[3] N.Y. Lee, and C.R. Litecky, ―An Empirical Study of Software Reuse
with Special Attention to Ada‖, IEEE Transactions on Software
Engineering, Vol 23, No 9, Page(s):537-549, September 1997.

[4] M. Jha, L. O’Brien, and P. Maheshwari, ―Identify Issues and Concerns
in Software Reuse‖, Proceedings of the Second International
Conference on Information Processing (ICIP’08), Bangalore, India,
2008.

[5] M. Jha, and L. O’Brien, ―Identifying Issues and Concerns in Software
Reuse in Software Product Lines‖, 11th International Conference on
Software Reuse (ICSR) , Virginia, USA 26-30 September 2009.

[6] M. Griss, and M. Wosser, ―Making Reuse Work at Hewlett- Packard‖,
IEEE Software, Vol 12, No 1, Page(s):105-107, 1995.

[7] M. Griss, "Reuse Comes in Several Flavours," presented at the Flashline
white paper, 2003.

[8] C. McClure, ―Software Reuse‖, Wiley-IEEE Computer Society Press,
New York, 2001.

[9] Y. Kim and E. A. Stohr, "Software Reuse: Survey and Research
Directions " Journal of Management Information Systems, Volume 14,
Page(s): 113-145, Spring, 1998.

[10] W. Frakes and K. Kang, "Software Reuse Research: Status and Future,"
IEEE Transactions on Software Engineering, Volume 31, Number 7,
Page(s): 529-536, 2005.

[11] M. Morisio, M. Ezran, and C. Tully, "Success and Failures in Software
Reuse," IEEE Transaction on Software Engineering,Volume 28,
Number 4, Page(s): 340-357, April 2002.

[12] R. van Ommering, ―Software Reuse in Product Populations,‖ IEEE
Transactions on Software Engineering, Volume 31, Number 7, Page(s):
537-550, 2005.

[13] M.F. Dunn, and J.C. Knight, ―Software Reuse in an Industrial Setting: A
Case Study,‖ Proceedings of 13th International Conference on Software
Engineering, IEEE CS Press, Page(s): 329-338, 1991.

[14] E. Henry, and B. Faller, ―Large-Scale Industrial Reuse to Reduce Cost
and Cycle Time,‖ IEEE Software, Volume 12, Number 5, Page(s): 47-
53, 1995.

[15] D.D. McCracken, M.A. Jackson, ― Life Cycle Concept Considered
Harmful‖, ACM SIGSOFT, Volume 7, Number 3 Page(s):29-32, April
1982.

[16] I. Sommerville, Software Engineering, 7th edition, Addison-Wesley,
2009.

[17] M.T. Harandi, ―Building a Knowledge Based Software Development
Environment,‖ IEEE Journal on Selected Areas of Communications,
Volume 6, Number 5, Page(s): 862-868, 1988.

[18] B.P. Allen and S.D. Lee, A Knowledge-based Environment for the
Development of Software Parts Composition Systems. In Proceedings of
the 11th International Conference on Software Engineering, Page(s):
104-112, Pittsburgh, PA, May 1989.

[19] P. Devanbu, R.J.Brachman, and etc. LaSSIE: A Knowledge-based
Software Information System. In Proceedings of the 12th International
Conference on Software Engingeering, pages 249-261, Nice, France,
March 1990.

[20] M.Wood and I. Sommerville, A Knowledge-based Software
Components Catalogue. In P. Brereton, editor, Software Engineering
Environments, Page(s): 116-133. ELLIS Horwood Limited, 1988.

[21] A. J. Pinkney, An Automatic Cane Railway Scheduling System, MSc
Thesis, Department of Mathematics, James Cook University of North
Queensland, Australia. December 1987.

[22] P. Mi and W. Scacchi, Modeling Articulation Work in Software
Engineering Processes. Proceedings of the 1st International Conference
on the Software Process, Page(s): 188-201, October 1991.

[23] M. Jha, and P. Maheshwari, ―Reusing Code for Modernization of
Legacy Systems‖, Proceedings of IEEE Conference on Software
Technology and Practice 2005 Budapest, Hungary, 2005.

[24] G. Booch, ―Architectural patterns‖ http://www.rational.com/products/
whitepapers/390.jsp 2001-0730, 1998.

[25] J.M. Moore and S. C. Bailin, ―Domain Analysis Framework for Reuse”,
Domain Analysis and Software Systems Modeling, IEEE CS Press,1993.

[26] H. Bruyninckx. Software patternshttp://www.orocos.org/patterns.html,
2002.

[27] W.W. Agresti and F.E. McGarry, ―Minnowbrook Workshop on
Software Reuse: A Summary Report,‖ Software Reuse: Emerging
Technology, Will Tracz, ed., Page(s): 33-40, 1988.

[28] Arun Sen, ―The Role of Opportunism in the Software Design Reuse
Process”, IEEE Transaction on Software Engineering, Volume 23,
Number 7, July 1997.

[29] T. Biggerstaff and C. Richter, ―Reusability Framework, Assessment, and
Directions,‖ IEEE Software, Volume 4, Number 1, Page(s): 41–49,
March 1987.

[30] R. Prieto-Diaz and P Freeman, ―Classifying Software for Reusability‖
IEEE Software, Volume 4, Number 1, Page(s): 6-16, March 1987.

[31] J. Borstler, ―Feature Oriented Classification for Software Reuse‖,
Proceedings of Seventh International Conference of Software
Engineering and Knowledge Engineering, 1995.

[32] A. M. Zaremski, and J. M. Wing, ― Signature Matching: A Key of
Reuse‖ Technical Report CMU-CS 93-151, Carnegie Mellon University,
School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, May 1993.

[33] J. Jeng, and B. H. C. Cheng, ―Using Analogy to Determine Program
Modifications Based on Specification Changes‖, Proceedings of IEEE
5th International Conference on Tools with Artificial Intelligence,
Page(s): 113-116, Boston, MA, November 1993.

[34] E.J. Rollins, and J. M. Wing, ―Specifications as Search Keys for
Software Libraries: A Case Study Using Lambda Prolog‖, Technical
Report CMU-CS 90-159, Carnegie Mellon University, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
September 1990.

[35] S. Atkinson, and R. Duke, ―Behavioural Retrieval from Class Libraries‖,
Australian Computer Science Communications, Volume 17, Number 1,
Page(s):13-20, January 1995.

[36] A. Podgurski, and L. Pierce, ―Behavioural Sampling: A Technique for
Automated Retrieval of Reusable Components‖, Proceedings of the 14th
International Conference on Software Engineering, Page(s): 349-360,
1992.

[37] R. J. Hall, ―Generalized Behaviour Based Retrieval‖, Proceedings of the
15th International Conference on Software Engineering, Page(s):371-
380, May 1993.

[38] L. O’Brien, C. Stoermer, ―Architecture Reconstruction Case Study‖,
CMU/SEI-2003-TN-008, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, April 2003.

[39] T. Biggerstaff and A. Perlis, ―Special Issue on Software Reusability‖,
IEEE Transaction on Software Engineering, Volume 10, Number 5,
September, 1984.

[40] ―Special Issue on Software Reusability,‖ IEEE Software, W. Tracz, ed.,
vol. 4, no. 4, July 1987.

[41] J. Bosch and N. Juristo, ―Designing Software Architectures for
Usability,‖ Proceedings of 25th International Conference on Software
Engineering, Page(s): 757-758,May 2003.

[42] N.Y. Lee and C.R. Litecky, ―An Empirical Study of Software Reuse
with Special Attention to Ada,‖ IEEE Transaction on Software
Engineering, Volume 23, Number 9, Page(s): 537-549, September 1997.

[43] J. Bosch, ―Design and Use of Industrial Software Architectures,‖
Proceedings of Conference on. Technology of Object-Oriented
Languages and Systems, Page(s): 404-404, June 1999.

[44] J. Klein, B. Price, and D. Weiss, ―Industrial-Strength Software Product-
Line Engineering,‖ Proceedings of 25th International Conference on
Software Engineering, Page(s): 751-752, May 2003.

[45] J. Gustafsson, J. Paakki, L. Nenonen, and A.I. Verkamo, ―Architecture-
Centric Software Evolution by Software metrics and Design Patterns,‖
Proceedings of Sixth European Conference on Software Maintenance
and Re-Engineering, Page(s): 108-115, Mar. 2002.

[46] G.R. Gladden, ―Stop the life-cycle, I want to get off‖, ACM SIGSOFT,
VOL. 7, NO. 2, PP.35-39, April 1982.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

48

About Author(s):

Meena Jha holds a Bach of Engineering (Electronics and

Communication), Masters of Engineering (Instrumentation

& Control), and on completion of her PhD in

Modernization of Legacy Systems from UNSW Sydney.

She has also been associated with industry on Legacy

modernization process. She has 20 years experience in

teaching and research. She is a member of IEEE and IEEE

Computer Society.

Dr Liam O'Brien has over 23 years experience in research

and development in software engineering. He is a Software

and Applications Architect with Geoscience Australia and

was previously Chief Software Architect with CSIRO and

a Principal Researcher at NICTA’s e-Government

Initiative. He is also a Member-at-Large of the Service

Science Society Australia which he co-founded in 2010.

He has previously worked as s researcher with Lero

(Ireland), Carnegie Mellon University’s Software

Engineering Institute (USA), CSIRO (Australia) and the

University of Limerick (Ireland). His main areas of

research include enterprise architecture, software

architecture, SOA, service science, software reuse,

software modernisation, and cloud computing. He holds a

BSc and PhD from the University of Limerick, Ireland. He

is a member of the IEEE and IEEE Computer Society.

UACEE International Journal of Computer Science and its Applications - Volume 3: Issue 1 [ISSN 2250 - 3765]

